首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional crystalline arrays of NADH:Q oxidoreductase preparations have been obtained by microdiffusion of protein dissolved in detergent against a 15 mM sodium acetate buffer of pH 5.5 containing 10% (wv) ammonium sulphate. Electron microscopy was used to study the structure of negatively stained crystals. Computer-reconstructed images were obtained by the Fourier peak filtering method. The crystals have p4 symmetry and a square unit cell with dimensions of 15.2 ± 0.5 nm. The four asymmetric units in the unit cell form a single tetrameric molecule with a dimension in the third direction of 8.2 nm. It is concluded on the basis of the estimated molecular mass that each tetramer cannot contain more than only one FMN molecule. This implies that the tetramers possibly are only a part of Complex I, since there is much evidence that one functional enzyme molecule of Complex I contains two FMN molecules.  相似文献   

2.
The experimental data currently available suggest that QH2: cytochromec oxidoreductase functions according to a Q-cycle type of mechanism. The molecular weight of the enzyme in a natural or artificial phospholipid bilayer or in solution corresponds to that of a dimer. The pre-steady state kinetics of reduction of the prosthetic groups indicate that the enzyme is functionally dimeric. A double Q cycle is proposed, describing the pathway of electron transfer in the dimeric QH2: cytochromec oxidoreductase. According to this scheme, the two monomeric halves of the enzyme act in a cooperative fashion to complete the catalytic cycle. It is proposed that high-potential cytochromeb-562 and low-potential cytochromeb-562 act cooperatively, viz. as a functional pair, in the antimycin-sensitive reduction of ubiquinone to ubiquinol.  相似文献   

3.
The reduction of NADH:Q oxidoreductase by NADPH occurring in submitochondrial particles has been studied with the freeze-quench technique. It was found that 50% of the Fe-S clusters 2, 3 and 4 could be reduced by NADPH within 30 ms at pH 6.5. The remainder of the clusters, including cluster 1, were reduced slowly and incompletely; it was concluded that these clusters play no role in the NADPH oxidase activity. Nearly the same results were obtained at pH 8 under anaerobic conditions, demonstrating that the rate of reaction of NADPH with the enzyme was essentially the same at both pH values. The rate and extent of reduction of half of the clusters 2 by NADPH at pH 8 were not affected by the presence of O2 of rotenone. This implies a pH-dependent oxidation of the enzyme as the cause for the absence of the NADPH oxidase activity at this pH. A dimeric model of the enzyme is proposed in which one protomer, containing FMN and the Fe-S clusters 1–4 in stoichiometric amounts, is responsible for NADH oxidation at pH 8. This protomer cannot react with NADPH. The other protomer, containing only FMN and the clusters 2, 3 and 4, is supposed to catalyse the oxidation of NADPH. The oxidation of this protomer by ubiquinone is expected to be strongly dependent on pH. This protomer might also catalyse NADH oxidation at pH 6–6.5.  相似文献   

4.
The reduction of NADH:Q oxidoreductase by NADPH occurring in submitochondrial particles has been studied with the freeze-quench technique. It was found that 50% of the Fe-S clusters 2, 3 and 4 could be reduced by NADPH within 30 ms at pH 6.5. The remainder of the clusters, including cluster 1, were reduced slowly and incompletely; it was concluded that these clusters play no role in the NADPH oxidase activity. Nearly the same results were obtained at pH 8 under anaerobic conditions, demonstrating that the rate of reaction of NADPH with the enzyme was essentially the same at both pH values. The rate and extent of reduction of half of the clusters 2 by NADPH at pH 8 were not affected by the presence of O2 of rotenone. This implies a pH-dependent oxidation of the enzyme as the cause for the absence of the NADPH oxidase activity at this pH. A dimeric model of the enzyme is proposed in which one protomer, containing FMN and the Fe-S clusters 1-4 in stoichiometric amounts, is responsible for NADH oxidation at pH 8. This protomer cannot react with NADPH. The other protomer, containing only FMN and the clusters 2, 3 and 4, is supposed to catalyse the oxidation of NADPH. The oxidation of this protomer by ubiquinone is expected to be strongly dependent on pH. This protomer might also catalyse NADH oxidation at pH 6-6.5.  相似文献   

5.
The rotenone sensitivity of bovine heart NADH: coenzyme Q oxidoreductase (Complex I) depends significantly on coenzyme Q1 concentration. The rotenone-insensitive Complex I reaction in Q1 concentration range above 300 M indicates an ordered sequential mechanism with Q1 and reduced Q1 (Q1H2) as the initial substrate to bind to the enzyme and the last product to be released from the enzyme product complex, respectively. This is the case in the rotenone-sensitive reaction although both K m and V max values of the rotenone-insensitive reaction for Q1 are significantly higher than those of the rotenone-sensitive reaction (Nakashima et al., 2002, J. Bioenerg. Biomemb. 34, 11–19). This rigorous control mechanism between the nucleotide and ubiquinone binding sites strongly suggests that the rotenone-insensitive reaction is also physiologically relevant.  相似文献   

6.
7.
From the chemiosmotic hypothesis it follows that no change is expected in potency of an uncoupler to inhibit an energy-driven reaction in an energy-transducing membrane if the energy-requiring part of the reaction, the so-called secondary proton pump, is partially inhibited by a specific, tightly bound inhibitor. An increase in potency upon inhibition of the primary pump may be expected, due to a lower rate of the total proton flow that can be used by the secondary pump and dissipated by the uncoupler. Contrary to this prediction several uncouplers (S13, SF6847, 2,4-dinitrophenol, valinomycin + nigericin) show an increase in uncoupling efficiency in ATP-driven reverse electron transfer (reversal) upon inhibition of the secondary pump in this reaction, the NADH:Q oxidoreductase, by rotenone. The increase in uncoupling efficiency is proportional to the decrease in the rate of reversal, that is to the decrease in concentration of active secondary pump. Similarly, upon inhibition of the primary pump, the ATPase, with oligomycin, an increase in uncoupling efficiency was found, also proportional to the decrease in the rate of reversal. When the pore-forming uncoupler gramicidin was used, no change in uncoupling potency was found upon inhibition of NADH:Q oxidoreductase. Inhibition of the ATPase, however, resulted in a proportionally lower uncoupling titre for gramicidin, just as was found for S13 in the presence of oligomycin. A difference was also found in the relative concentrations of S13 and gramicidin required to stimulate ATP hydrolysis or to inhibit reversal. The amount of S13 needed to stimulate ATP hydrolysis was clearly higher than the amount needed to inhibit reversal. On the contrary, the titre of gramicidin for both actions was about the same. To explain these results we propose that gramicidin uncouples via dissipation of the bulk delta mu H+, whereas the carrier-type uncouplers preferentially interfere with the direct energy transduction between the ATPase and redox enzymes. This is in accordance with the recently developed collision hypothesis.  相似文献   

8.
The pre-steady-state kinetics of reoxidation of NADH:Q oxidoreductase present in submitochondrial particles has been studied by the freeze-quench method. It was found that at pH 8 only 50% of the Fe-S clusters 2 and 4 and 75% of the clusters 3 were rapidly reoxidised after transient and complete reduction by a pulse of NADH in the presence of excess NADPH. Thus, NADPH keeps 50% of the clusters 2 and 4 and 25% of the clusters 3 permanently reduced at this pH. Since NADH oxidation is nearly optimal at this pH, whereas NADPH oxidation is virtually absent, it was concluded that these permanently reduced clusters were not involved in the NADH oxidation activity. Incomplete reoxidation of the clusters 2, 3 and 4 after a pulse of NADH was also found in the absence of NADPH, both at pH 6.5 and at pH 8. A pulse of NADPH given at pH 6.5, where NADPH oxidation by oxygen is nearly optimal, caused a slow reduction of 50% of clusters 2 and 4 and 30% of the clusters 3, which persisted for a period of at least 15 s. It was concluded that these clusters were not involved in the oxidation of NADPH by oxygen, as catalysed by the particles. As a working hypothesis a dimeric model for NAD(P)H:Q oxidoreductase is proposed, consisting of two different protomers. One of the protomers, containing FMN and the Fe-S clusters 1-4 in stoichiometric amounts, only reacts with NADH, and its oxidation by ubiquinone is rapid at pH but slow at pH 6.5. The other protomer, containing FMN and the clusters 2, 3 and 4, reacts with both NADH and NADPH and has a pH optimum at 6-6.5 for the reaction with ubiquinone.  相似文献   

9.
The pre-steady-state kinetics of reoxidation of NADH:Q oxidoreductase present in submitochondrial particles has been studied by the freeze-quench method. It was found that at pH 8 only 50% of the Fe-S clusters 2 and 4 and 75% of the clusters 3 were rapidly reoxidised after transient and complete reduction by a pulse of NADH in the presence of excess NADPH. Thus, NADPH keeps 50% of the clusters 2 and 4 and 25% of the clusters 3 permanently reduced at this pH. Since NADH oxidation is nearly optimal at this pH, whereas NADPH oxidation is virtually absent, it was concluded that these permanently reduced clusters were not involved in the NADH oxidation activity. Incomplete reoxidation of the clusters 2, 3 and 4 after a pulse of NADH was also found in the absence of NADPH, both at pH 6.5 and at pH 8. A pulse of NADPH given at pH 6.5, where NADPH oxidation by oxygen is nearly optimal, caused a slow reduction of 50% of clusters 2 and 4 and 30% of the clusters 3, which persisted for a period of at least 15 s. It was concluded that these clusters were not involved in the oxidation of NADPH by oxygen, as catalysed by the particles. As a working hypothesis a dimeric model for NAD(P)H:Q oxidoreductase is proposed, consisting of two different protomers. One of the protomers, containing FMN and the Fe-S clusters 1–4 in stoichiometric amounts, only reacts with NADH, and its oxidation by ubiquinone is rapid at pH but slow at pH 6.5. The other protomer, containing FMN and the clusters 2, 3 and 4, reacts with both NADH and NADPH and has a pH optimum at 6–6.5 for the reaction with ubiquinone.  相似文献   

10.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans consists of only three polypeptide subunits (Yang, X., and Trumpower, B. L. (1986) J. Biol. Chem. 261, 12282-12289), whereas the analogous complexes of eukaryotic mitochondria consist of nine or more polypeptides (Schagger, H., Link, T. A., Engel, W. D., and von Jagow, G. (1986) Methods Enzymol. 126, 224-237). Using the purified three-subunit Paracoccus complex we have tested whether this simple cytochrome bc1 complex has the same electron transfer pathway and proton translocation activity as the bc1 complexes of mitochondria. Under presteady state conditions, the effects of inhibitors on reduction of cytochromes b and c1 by quinol and oxidant-induced reduction of cytochrome b indicate a cyclic electron transfer pathway and two routes of cytochrome b reduction in the three-subunit Paracoccus cytochrome bc1 complex. A novel method was developed to incorporate the cytochrome bc1 complex into liposomes with the detergent dodecyl maltoside. The enzyme reconstituted into liposomes translocated protons with an H+/2e value of 3.9. Carbonyl cyanide m-chlorophenylhydrazone eliminated proton translocation, while permitting the scalar release of protons from quinol, and thus reduced the H+/2e ratio to 2. These values agree with the predicted stoichiometries for proton translocation by a protonmotive Q cycle pathway. No inhibition of proton translocation by N',N'-dicyclohexylcarbodiimide was detected when the Paracoccus cytochrome bc1 complex was incubated with N',N'-dicyclohexylcarbodiimide before or after reconstitution into liposomes. Electron transfer in the three-subunit complex thus appears to occur by a protonmotive Q cycle pathway identical to that in mitochondrial cytochrome bc1 complexes. Only three polypeptides, cytochromes b, c1, and the Rieske iron-sulfur protein, are required for respiration and energy transduction in the cytochrome bc1 complex. The function of the supernumerary polypeptides in mitochondrial bc1 complexes is thus unclear.  相似文献   

11.
(1) The EPR spectrum of Center 1 of NADH dehydrogenase in isolated Complex I or submitochondrial particles from beef heart consists of two overlapping nearly axial signals of the same intensity. They are defined as Center 1a (gll = 0.021, gl = 1.938) and Center 1b (gll = 2.021, gl = 1.928). (2) The line shape of the EPR spectrum of the Center 3+4 can be interpreted as an overlap of two rhombic signals of the same intensity. We define Center 3 by the g-values: gz=2.103, gy = 1.93-1.94, gx=1.884, and Center 4 by the values gz=2.04, gy=1.92-1.93, gx=1.863. (3) Direct quantitation of the individuals signals as well as computer stimulation suggests that the amount of the Centers 1a and 1b is only 25% of that of the other individuals centers and FMN. As EPR spectra of beef-heart submitochondrial particles at 10-20 K are nearly identical to those of Complex I, the same relative concentrations of the Fe-S centers are also present in the particles. (4) The signals either observed by us in EPR spectra of Complex I and submitochondrial particles at 4.2 K and high microwave powers can now be explained without assuming more than 5 paramagnetic centers in NADH dehydrogenase.  相似文献   

12.
The sensitivity of the H+/2e- ratio of the redox-driven proton pumping by the NADH: ubiquinone reductase (complex I) of the submitochondrial particles to dicyclohexylcarbodiimide (DCCD) was studied by a thermodynamic approach, measuring the membrane potential and delta pH across the membrane and the redox potential difference across the complex I span of the respiratory chain. The delta Gr/delta muH+ ratio did not decrease upon additions of 50 or 100 nmol of DCCD per mg protein in the presence of oligomycin although the H+/2e- ratio has been demonstrated to decrease upon DCCD addition in kinetic experiments with mitochondria. Complex I then becomes reminiscent of the cytochrome bc1 complex, which shows DCCD sensitivity of the kinetically but not thermodynamically determined H+/2e- ratio.  相似文献   

13.
Na(+)-NQR is a unique energy-transducing complex, widely distributed among marine and pathogenic bacteria. It converts the energy from the oxidation of NADH and the reduction of quinone into an electrochemical Na(+)-gradient that can provide energy for the cell. Na(+)-NQR is not homologous to any other respiratory protein but is closely related to the RNF complex. In this review we propose that sodium pumping in Na(+)-NQR is coupled to the redox reactions by a novel mechanism, which operates at multiple sites, is indirect and mediated by conformational changes of the protein. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

14.
Oscar Juárez  Blanca Barquera 《BBA》2012,1817(10):1823-1832
Na+-NQR is a unique energy-transducing complex, widely distributed among marine and pathogenic bacteria. It converts the energy from the oxidation of NADH and the reduction of quinone into an electrochemical Na+-gradient that can provide energy for the cell. Na+-NQR is not homologous to any other respiratory protein but is closely related to the RNF complex. In this review we propose that sodium pumping in Na+-NQR is coupled to the redox reactions by a novel mechanism, which operates at multiple sites, is indirect and mediated by conformational changes of the protein. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

15.
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S] (2+,1+) and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S] (2+,1+) to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S] (+) at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF 1e (-) catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF.  相似文献   

16.
The initial velocity of NADH oxidation by bovine-heart submitochondrial particles was measured at pH 8.0 after pretreatment of these particles with different amounts of the inhibitor piericidine A together with 0.035 mM NADH. The amount of piericidine A required to fully inhibit the NADH oxidation activity extrapolated to exactly 1.0 per Fe-S cluster 2 of NADH:Q oxidoreductase. When no reducing equivalents from NADH were present during the pretreatment, this ratio was 1.2. The difference is explained by assuming that NADH:Q oxidoreductase binds piericidine A more effectively in the reduced state than in the oxidized state. It was also found that after Q10-extraction and reincorporation of submitochondrial particles, the amount of piericidine A required to fully inhibit the NADH oxidation activity of the particles increased with the amount of Q10 present during reincorporation. This is explained by assuming that binding of piericidine A, to the inhibitory site of NADH:Q oxidoreductase requires Q10. When 0.035 mM NADPH instead of NADH was present during the pretreatment of submitochondrial particles with piericidine A, the amount of inhibitor per cluster 2 required to fully inhibit the initial NADH-oxidation activity extrapolated to 0.5. This result strongly suggests that NADH:Q oxidoreductase is a functional dimer.  相似文献   

17.
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is a fundamental enzyme of the oxidative phosphorylation metabolism and ionic homeostasis in several pathogenic and marine bacteria. To understand the mechanism that couples electron transfer with sodium translocation in Na(+)-NQR, the ion dependence of the redox potential of the individual cofactors was studied using a spectroelectrochemical approach. The redox potential of one of the FMN cofactors increased 90 mV in the presence of Na(+) or Li(+), compared to the redox potentials measured in the presence of other cations that are not transported by the enzyme, such as K(+), Rb(+), and NH(4)(+). This shift in redox potential of one FMN confirms the crucial role of the FMN anionic radicals in the Na(+) pumping mechanism and demonstrates that the control of the electron transfer rate has both kinetic (via conformational changes) and thermodynamic components.  相似文献   

18.
NADH readily provides reducing equivalents to membrane-bound methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) in isolated membrane fractions, but detergent solubilization disrupts this electron-transfer process. Addition of exogenous quinones (especially decyl-plastoquinone and duroquinone) restores the NADH-dependent pMMO activity. Results of inhibitor and substrate dependence of this activity indicate the presence of only a type-2 NADH:quinone oxidoreductase (NDH-2). A 100-fold purification of the NDH-2 was achieved using lauryl-maltoside solubilization followed by ion exchange, hydrophobic-interaction, and gel-filtration chromatography. The purified NDH-2 has a subunit molecular weight of 36 kDa and exists as a monomer in solution. UV-visible and fluorescence spectroscopy identified flavin adenine dinucleotide (FAD) as a cofactor present in stoichiometric amounts. NADH served as the source of electrons, whereas NADPH could not. The purified NDH-2 enzyme reduced coenzyme Q(0), duroquinone, and menaquinone at high rates, whereas the decyl analogs of ubiquinone and plastoquinone were reduced at approximately 100-fold lower rates. Rotenone and flavone did not inhibit the NDH-2, whereas amytal caused partial inhibition but only at high concentrations.  相似文献   

19.
The first crystal structure of pyruvate:ferredoxin oxidoreductase to be determined has provided significant new information on its structural organization and redox chemistry. Spectroscopic analyses of a radical reaction intermediate have shed more light on its thiamin-based mechanism of catalysis. Different approaches have been used to study the interaction between the enzyme and ferredoxin, its redox partner.  相似文献   

20.
The energy-transducing NADH: quinone (Q) oxidoreductase (complex I) is the largest and most complicated enzyme complex in the oxidative phosphorylation system. Complex I is a redox pump that uses the redox energy to translocate H(+) (or Na(+)) ions across the membrane, resulting in a significant contribution to energy production. The need to elucidate the molecular mechanisms of complex I has greatly increased. Many devastating neurodegenerative disorders have been associated with complex I deficiency. The structural and functional complexities of complex I have already been established. However, intricate biogenesis and activity regulation functions of complex I have just been identified. Based upon these recent developments, it is apparent that complex I research is entering a new era. The advancement of our knowledge of the molecular mechanism of complex I will not only surface from bioenergetics, but also from many other fields as well, including medicine. This review summarizes the current status of our understanding of complex I and sheds light on new theories and the future direction of complex I studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号