首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A method based on gas chromatography–mass spectrometry–selected-ion monitoring was developed to measure the main metabolites of 17α-methyltestosterone, 17α-methyl-5α-androstan-3α,17β-diol and 17α-methyl-5β-androstan-3α,17β-diol, in human urine. 17α-Methyl-[2H3]-5α-androstan-3α,17β-diol and 17α-methyl-[2H3]-5β-androstan-3α,17β-diol were used as internal standards. The methods involved purification using a Sep-Pak C18 cartridge, hydrolysis by β-glucuronidase from Ampullaria and derivatization with N-methyl-N-trimethylsilyl-trifluoroacetamide/dithioerythriol/ammonium iodide. Quantitation was achieved by selected-ion monitoring of the characteristic fragment ions ([(M+H)−2×TMSOH]+) of the di-TMS derivatives on the chemical ionization mode. The method provides a specific, sensitive and reliable technique to determine the urine levels of 17α-methyl-5α-androstan-3α,17β-diol and 17α-methyl-5β-androstan-3α,17β-diol, and can be applied to pharmacokinetic studies of 17α-methyltestosterone.  相似文献   

2.
The subunit molecular mass of α-crystallin, like many small heat-shock proteins (sHsps), is around 20 kDa although the protein exists as a large aggregate of average mass around 800 kDa. Despite this large size, a well-resolved 1H NMR spectrum is observed for α-crystallin which arises from short, polar, highly-flexible and solvent-exposed C-terminal extensions in each of the subunits, αA- and αB-crystallin. These extensions are not involved in interactions with other proteins (e.g. β- and γ-crystallins) under non-chaperone conditions. As determined by NMR studies on mutants of αA-crystallin with alterations in its C-terminal extension, the extensions have an important role in acting as solubilising agents for the relatively-hydrophobic α-crystallin molecule and the high-molecular-weight (HMW) complex that forms during the chaperone action. The related sHsp, Hsp25, also exhibits a flexible C-terminal extension. Under chaperone conditions, and in the HMW complex isolated from old lenses, the C-terminal extension of the αA-crystallin subunit maintains its flexibility whereas the αB-crystallin subunit loses, at least partially, its flexibility, implying that it is involved in interaction with the ‘substrate’ protein. The conformation of ‘substrate’ proteins when they interact with α-crystallin has been probed by 1H NMR spectroscopy and it is concluded that α-crystallin interacts with ‘substrate’ proteins that are in a disordered molten globule state, but only when this state is on its way to large-scale aggregation and precipitation. By monitoring the 1H and 31P NMR spectra of α-crystallin in the presence of increasing concentations of urea, it is proposed that α-crystallin adopts a two-domain structure with the larger C-terminal domain unfolding first in the presence of denaturant. All these data have been combined into a model for the quaternary structure of α-crystallin. The model has two layers each of approximately 40 subunits arranged in an annulus or toroid. A large central cavity is present whose entrance is ringed by the flexible C-terminal extensions. A large hydrophobic region in the aggregate is exposed to solution and is available for interaction with ‘substrate’ proteins during the chaperone action.  相似文献   

3.
A sensitive and specific assay of human plasma for the determination of (5α,7β,16β)-16[(4-chlorophenyl)oxy]-4,7-dimethyl-4-aza-andronstan-3-one (I), a selective inhibitor of human type 1 5α-reductase, has been developed. The method is based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS–MS) detection. The analyte (I) and internal standard, Proscar (II), were isolated from the basified biological matrix using a liquid–liquid extraction with methyl-tert.-butyl ether (MTBE). The organic extract was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The MS–MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer using a heated nebulizer interface. Multiple reaction monitoring using the precursor→product ion combinations of m/z 430→114 and 373→305 was used to quantify I and internal standard (II), respectively. The assay was validated in the concentration range of 0.5 to 500 ng/ml in human plasma. The precision of the assay, expressed as coefficient of variation (C.V.), was less than 7% over the entire concentration range, with adequate assay specificity and accuracy. The HPLC–MS–MS method provided sufficient sensitivity to completely map the 24 h pharmacokinetic time-course following a single 0.5 mg dose of I.  相似文献   

4.
17-O-Acetyl testosterone, which has no susceptible hydroxyl or carboxyl group for glycosylation, was glycosylated with 2,3,4,6-tetra-O-acetyl-α- -glucopyranosyl bromide in the presence of a mixed catalyst, Hg(CN)2 and HgBr2, in benzene–nitromethane. Reaction occurred on the α,β-unsaturated ketone on the six–membered A-ring to give six 3-O-glycosides, each bearing a cyano group at the 3- or 5-position of the aglycon, and a 3-O-glycoside bearing a CONH2 group at the 3-position. Structural analyses of these products were carried out by various NMR (1H, 13C NMR, 1H–1H and 1H–13C COSY, HMBC, and DEPT), FABMS and X-ray analyses. The mechanisms of the formations of the products are discussed. It was determined that mercuric cyanide was essential as a catalyst for the progress of the cyanoglycosylation.  相似文献   

5.
The gene encoding α-methylserine aldolase was isolated from Bosea sp. AJ110407. Sequence analysis revealed that the predicted amino acid sequence encoded by the 1320-bp open reading frame was 65.0% similar to the corresponding sequence of the enzyme isolated from Ralstonia sp. AJ110405. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified. Gel filtration revealed the molecular mass of the purified enzyme to be approximately 78 kDa, suggesting that the enzyme is a homodimer. The enzyme exhibited a specific peak at 429 nm in the spectrum and contained 1 mol pyridoxal 5′-phosphate per mole of the subunit. The Vmax value was 1.40 μmol min−1 mg−1, and the Km value was 1.5 mM for the reaction wherein formaldehyde was released from α-methyl-l-serine. This enzyme could also catalyze the reverse reaction, i.e., the synthesis of α-methyl-l-serine from l-alanine and formaldehyde. This activity was inhibited in the excess of formaldehyde; however, α-methyl-l-serine was efficiently produced from l-alanine in the presence of formaldehyde. This method was also applicable for producing α-ethyl-l-serine from l-2-aminobutyric acid.  相似文献   

6.
Summary. A novel natural peptide ergot alkaloid γ-ergokryptinine containing norleucine has been isolated from ergot sclerotia of the field-growing parasitic fungus Claviceps purpurea CCM 8059. Its structure was deduced from the NMR and mass spectral data. The final structural proof was provided by the crystal structure determination, which is the first X-ray structure of a natural Nle-containing secondary metabolite. The conformations of three ergopeptinines: γ-ergokryptinine, ergoladinine, and α-ergokryptinine were compared.  相似文献   

7.
A folding topology for the homodimeric N-terminal domain (IIA, 2 × 14 kDa) of the hydrophilic subunit (IIABman) of the mannose transporter of E. coli is proposed. The prediction is based on (i) tertiary structure prediction methods, and (ii) functional properties of site-directed mutants in correlation with NMR-derived α/β secondary structure data. The 3D structure profile suggested that the overall fold of IIA is similar to that of the unrelated protein, flavodoxin, which is an open-stranded parallel β-sheet with a strand order of 5 4 3 1 2. The 3D model of IIA, constructed using the known atomic structure of flavodoxin, is consistent with the results from site-directed mutagenesis. Recently NMR results confirmed the open parallel β-sheet with a strand order of 4 3 12 (residues 1-120) of our model whereas β-strand 5 (residues 127–130) was shown to be antiparallel to β-strand 4. The correctly predicted fold includes 90% of the monomeric subunit sequence and contains all functional sites of the IIA domain.  相似文献   

8.
Roots of Anisotome pilifera yielded typical Apiaceae compounds 6,7-dimethoxy-coumarin 1 and falcarindiol 2, plus the irregular diterpenes anisotomenoic acid 3 and anisotomene alcohol 4. The new germacrane derivative 8-O-senecioyl-6β,8α,11-trihydroxygermacra-1(10)E,4E-diene 5 was also isolated and the structure established by means of high resolution mass spectrometry and 1-D and 2-D NMR spectroscopy. Distribution and chemosystematic significance of 6,8-dihydroxygermacra-1(10)E,4E-dienes and 6,8,11-trihydroxygermacra-1(10)E,4E-dienes are discussed. Additionally, leaves of A. pilifera yielded chlorogenic acid 6 and high amounts of luteolin 7-O-α- -rhamnosyl(1→6)-β- -glucoside 7.  相似文献   

9.
A gas chromatography–electron capture mass spectrometry assay has been developed for the histamine H3 receptor agonist, Nα-methylhistamine (Nα-MH). The assay is linear from 50 pg–10 ng, with a limit of detection of 50 pg/ml for gastric juice and plasma, and 50 pg/sample for bacteria (107–108 CFU) and gastric tissue (5–10 mg wet weight). The limits of quantification are 100 pg/ml for gastric juice (%RSD=1.4) and plasma (%RSD=9.4), and 100 pg/sample for bacteria (%RSD=3.9) and tissue (%RSD=5.8). Nα-MH was not present in human plasma, but low levels (1.4 ng/ml and 0.4 ng/ml) were detected in two samples of human gastric juice obtained from patients infected with Helicobacter pylori.  相似文献   

10.
α-Ketobutyrate decarboxylase encoded in the -methionine catabolism operon of Pseudomonas putida is homologous with the E1 component of pyruvate dehydrogenase complex from gram-negative bacteria. The enzyme was purified to homogeneity from the cell extract of an Escherichia coli transformant. The purified enzyme was homodimeric with a subunit of Mr 93,000 on SDS-PAGE. The enzyme activity was activated by the addition of both thiamine pyrophosphate (TPP) and a divalent cation, such as Mg2+, Mn2+, and Co2+. The enzyme showed high activity for α-ketobutyrate and α-keto-n-valerate rather than pyruvate, but the α-keto acids with increasing length of the side chain as well as branching, such as α-keto-n-caproate and α-keto-3-methylvalerate, were not used by the enzyme. The Km values for α-ketobutyrate and pyruvate were 0.016 and 0.147 mM, respectively, and the kcat/Km value (10.69 s−1 mM−1) for α-ketobutyrate was 29-fold greater than that for pyruvate. Thus, α-ketobutyrate decarboxylase is distinguished from the pyruvate dehydrogenase E1 component with respect to the substrate specificity, although their structural and enzymological properties were similar. These results suggest that the unique substrate specificity of α-ketobutyrate decarboxylase is due to a slight difference in the highly conserved active sites of both enzymes.  相似文献   

11.
Three novel sterols with a rare D-ring unsaturation were isolated from the marine sponge Topsentia aurantiaca and identified as 5 alpha-cholest-14-ene-3 beta,16 alpha-diol (2), 24R-ethyl-5 alpha-cholest-14-ene-3 beta,16 alpha-diol (3), and 24S-ethyl-5 alpha-cholest-14-ene-3 beta,16 alpha-diol (4). The sponge also elaborates a further D-ring unsaturated sterol, 5 alpha-cholest-15-en-3 beta-ol (1), which has been previously described only as a synthetic product. All the 1H and 13C nuclear magnetic resonances of compounds 1 and 2 were assigned to the relevant protons and carbons by bidimensional COSY, HETCOR, and HMQC nuclear magnetic resonance experiments.  相似文献   

12.
Mu Z  Yang Z  Yu D  Zhao Z  Munger JS 《Mechanisms of development》2008,125(5-6):508-516
Gene deletion experiments have shown that the three TGFβ isoforms regulate distinct developmental processes. Recent work by our group and others showed that the integrins αvβ6 and αvβ8 activate latent forms of TGFβ1 and TGFβ3. This raises the possibility that TGFβ1 and TGFβ3 act redundantly in developmental processes where both isoforms are expressed and activation is by integrins. To investigate this issue, we generated mice with defective integrin-mediated TGFβ1 activation (Tgfb1RGE/RGE) that were also homozygous for a null mutation in the TGFβ3 gene. Tgfb1RGE/RGE; Tgfb3−/− mice have severely perturbed development of the brain vasculature that is highly similar to that in mice lacking αvβ8. Some Tgfb1RGE/RGE; Tgfb3+/− and Tgfb1RGE/RGE; Tgfb3+/+ mice have milder, background-dependent versions of the phenotype. In addition, we found that Tgfb3 gene status influences embryonic lethality due to TGFβ1 deficiency after limited backcrossing to the BALB/c background. Conversely, Tgfb1 gene status modifies the extent of palate fusion in Tgfb3−/− mice after limited backcrossing to the ICR background. Our results are consistent with a functional connection between TGFβ1 and TGFβ3 during development based on a shared mechanism of activation.  相似文献   

13.
3α-Hydroxysteroid dehydrogenases (3α-HSDs) inactivate steroid hormones in the liver, regulate 5α-dihydrotestosterone (5α-DHT) levels in the prostate, and form the neurosteroid, allopregnanolone in the CNS. Four human 3α-HSD isoforms exist and correspond to AKR1C1–AKR1C4 of the aldo-keto reductase (AKR) superfamily. Unlike the related rat 3α-HSD (AKR1C9) which is positional and stereospecific, the human enzymes display varying ratios of 3-, 17-, and 20-ketosteroid reductase activity as well as 3α-, 17β-, and 20α-hydroxysteroid oxidase activity. Their kcat values are 50–100-fold lower than that observed for AKR1C9. Based on their product profiles and discrete tissue localization, the human enzymes may regulate the levels of active androgens, estrogens, and progestins in target tissues. The X-ray crystal structures of AKR1C9 and AKR1C2 (human type 3 3α-HSD, bile acid binding protein and peripheral 3α-HSD) reveal that the AKR1C2 structure can bind steroids backwards (D-ring in the A-ring position) and upside down (β-face inverted) relative to the position of a 3-ketosteroid in AKR1C9 and this may account for its functional plasticity. Stopped-flow studies on both enzymes indicate that the conformational changes associated with binding cofactor (the first ligand) are slow; they are similar in both enzymes but are not rate-determining. Instead the low kcat seen in AKR1C2 (50-fold less than AKR1C9) may be due to substrate “wobble” at the plastic active site.  相似文献   

14.
Inhibition of aromatase is an efficient approach for the prevention and treatment of breast cancer. New 6β,19-bridged steroid analogs of androstenedione, 6β,19-epithio- and 6β,19-methano compounds 11 and 17, were synthesized starting from 19-hydroxyandrostenedione (6) and 19-formylandrost-5-ene-3β,17β-yl diacetate (12), respectively, as aromatase inhibitors. All of the compounds including known steroids 6β,19-epoxyandrostenedione (4) and 6β,19-cycloandrostenedione (5) tested were weak to poor competitive inhibitors of aromatase and, among them, 6β,19-epoxy steroid 4 provided only moderate inhibition (Ki: 2.2 μM). These results show that the 6β,19-bridged groups of the inhibitors interfere with binding in active site of aromatase.  相似文献   

15.
In order to investigate the polymorphism of α-globin chain of hemoglobin amongst caprines, the linked Iα and IIα globin genes of Barbary sheep (Ammotragus lervia), goat (Capra hircus), European mouflon (Ovis aries musimon), and Cyprus mouflon (Ovis aries ophion) were completely sequenced, including the 5′ and 3′ untranslated regions. European and Cyprus mouflons, which do not show polymorphic α globin chains, had almost identical α globin genes, whereas Barbary sheep exhibit two different chains encoded by two nonallelic genes. Four different α genes were observed and sequenced in goat, validating previous observations of the existence of allelic and nonallelic polymorphism. As in other vertebrates, interchromosomal gene conversion appears to be responsible for such polymorphism. Evaluation of nucleotide sequences at the level of molecular evolution of the Iα-globin gene family in the caprine taxa suggests a closer relationship between the genus Ammotragus and Capra. Molecular clock estimates suggest sheep-mouflon, goat-aoudad, and ancestor-caprine divergences of 2.8, 5.7, and 7.1 MYBP, respectively.  相似文献   

16.
Two kinds of water-insoluble (1 → 3)-α-d-glucan samples, ab-PCM3-I and ac-PCM3-I, isolated from different Poria cocos mycelia were sulfated, to produce two series of water-soluble derivatives ab-PCM3-I-S1–S5 and ac-PCM3-I-S1–S5, respectively. The derivatives having different weight-average molecular mass (Mw) were produced by changing reaction temperature and time as well as molar ratios between chlorosulfonic acid and number of hydroxyl groups in the glucan. The degrees of substitution (DS) of the sulfated derivatives were analyzed by elemental analysis (EA) to be 0.39–0.67 for ab-PCM3-I-S and 0.73–0.96 for ac-PCM3-I-S, respectively. The Mw and the intrinsic viscosity ([η]) of the samples ab-PCM3-I-S and the ac-PCM3-I-S were measured by size exclusion chromatography combined with laser light scattering (SEC–LLS) and viscometry in phosphate buffer solution (PBS) at 37 °C. The results indicated that their Mw ranged from 2.0 to 11.3 × 104 for the samples ab-PCM3-I-S, and 4.7 to 40.0 × 104 for the samples ac-PCM3-I-S. Moreover, the antitumor activities of the sulfated derivatives ab-PCM3-I-S and ac-PCM3-I-S against Sarcoma 180 tumor cell tested both in vitro and in vivo are significantly higher than those of the native α-d-glucans. Therefore, a moderate range of molecular mass from 2.0 × 104 to 40.0 × 104, relatively high chain stiffness and good water solubility of the sulfated derivatives are beneficial to the enhancement of their antitumor activities.  相似文献   

17.
The bacterial strain PP710, isolated from soil and identified as Paenibacillus species, produced a low-digestibility α-glucan containing a large amylase-resistant portion. This α-glucan was obtained in high yields from maltodextrin (dextrose equivalent 3) by using the condensed culture supernatant of the strain as the enzyme preparation. The water-soluble dietary fiber content of the low-digestibility α-glucan was 80.2%, and showed resistance to a rat intestinal enzyme preparation. The α-glucan was found to be a novel highly branched α-glucan by acid hydrolysis, NMR analysis, gel permeation chromatography, methylation analysis, and enzymatic digestion.  相似文献   

18.
The extracellular β-agarase LSL-1 produced by an agar-liquefying, soil bacterium Acinetobacter sp., AG LSL-1 was purified to homogeneity by combination of ion-exchange and size exclusion chromatography with final yield of 44%. The enzyme has a specific activity of 397 U mg−1 protein and with a molecular mass of 100 kDa. The agarase was active in the pH range of 5.0–9.0, optimally at pH 6.0 and temperature between 25 °C and 55 °C and optimal at 40 °C. The enzyme retained 63% of native activity at 50 °C suggesting it is a thermostable. The activity of the agarase was completely inhibited by metal ions, Hg2+, Ag+ and Cu2+, whereas 25–40% of native activity was retained in the presence of Zn2+, Sn2+ and SDS. Neoagarobiose was the final product of hydrolysis of both agarose and neoagarohexaose by the purified agarase LSL-1. Based on the molecular mass and final products of agarose hydrolysis, the β-agarase LSL-1 may be further grouped under group III β-agarases and may be a member of GH-50 family. This is the first report on the purification and biochemical characterization of β-agarase from an agar-liquefying Acinetobacter species.  相似文献   

19.
Four limonoids, 1-O-deacetyl-6-deoxykhayanolide E (1), 1-O-deacetyl-2α-hydroxykhayanolide E (2), 3-acetyl-khayalactone (3), 11α-acetoxy-2α-hydroxy-6-deoxy-destigloylswietenine acetate (4), along with 12 known limonoids, were isolated from the stems of Khaya ivorensis. Their structures were elucidated on the basis of spectroscopic analysis.  相似文献   

20.
In recent years several 15β-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3α,15β,17α-trihydroxy-5β-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3ξ,5ξ-isomers, namely 3α,15β,17α-trihydroxy-5α-pregnan-20-one (3), 3β,15β,17α-trihydroxy-5α-pregnan-20-one (7) and 3β,15β,17α-trihydroxy-5β-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3β,15β-Diacetoxy-17α-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15β,17α-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15β-acetoxy-3β,17α-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15β-acetoxy-3β,17α-dihydroxy-5α-pregnan-20-one (13) a common intermediate for the synthesis of the 3β(and α),5α-isomers. Hydrolysis of the 15β-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15β-acetoxy-17α-hydroxy-5α-pregnan-3,20-dione (14) which on reduction with -Selectride and hydrolysis of the 15β-acetate gave 3. Finally, hydrogenation of 4 gave 15β,17α-dihydroxy-5β-pregnan-3,20-dione (10) which on reduction with -Selectride gave 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号