首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress, as defined by Selye, is the non-specific response of an organism to any demand made upon it. The response varies in intensity, depending on age, experience and genetic makeup. These demands, or stressors, can be physical, social or psychological. This concept has been challenged by others and the importance of perception and cognition in the stress response is argued strongly here. The role or cognition in reacting to external stressors is reviewed in the light of the three brain model and the differing functions of the right and left hemisphere. Techniques such as drugs and cognitive restructuring for altering perception and cognition are discussed. Cognitive restructuring is an important technique used in psychotherapy to enable patients to achieve more appropriate emotional responses and consequent behaviours.  相似文献   

2.
Adaptation aftereffects have been found for low-level visual features such as colour, motion and shape perception, as well as higher-level features such as gender, race and identity in domains such as faces and biological motion. It is not yet clear if adaptation effects in humans extend beyond this set of higher order features. The aim of this study was to investigate whether objects highly associated with one gender, e.g. high heels for females or electric shavers for males can modulate gender perception of a face. In two separate experiments, we adapted subjects to a series of objects highly associated with one gender and subsequently asked participants to judge the gender of an ambiguous face. Results showed that participants are more likely to perceive an ambiguous face as male after being exposed to objects highly associated to females and vice versa. A gender adaptation aftereffect was obtained despite the adaptor and test stimuli being from different global categories (objects and faces respectively). These findings show that our perception of gender from faces is highly affected by our environment and recent experience. This suggests two possible mechanisms: (a) that perception of the gender associated with an object shares at least some brain areas with those responsible for gender perception of faces and (b) adaptation to gender, which is a high-level concept, can modulate brain areas that are involved in facial gender perception through top-down processes.  相似文献   

3.
Why bodies? It is rather puzzling that given the massive interest in affective neuroscience in the last decade, it still seems to make sense to raise the question ‘Why bodies’ and to try to provide an answer to it, as is the goal of this article. There are now hundreds of articles on human emotion perception ranging from behavioural studies to brain imaging experiments. These experimental studies complement decades of reports on affective disorders in neurological patients and clinical studies of psychiatric populations. The most cursory glance at the literature on emotion in humans, now referred to by the umbrella term of social and affective neuroscience, shows that over 95 per cent of them have used faces as stimuli. Of the remaining 5 per cent, a few have used scenes or auditory information including human voices, music or environmental sounds. But by far the smallest number has looked into whole-body expressions. As a rough estimate, a search on PubMed today, 1 May 2009, yields 3521 hits for emotion × faces, 1003 hits for emotion × music and 339 hits for emotion × bodies. When looking in more detail, the body × emotion category in fact yields a majority of papers on well-being, nursing, sexual violence or organ donation. But the number of cognitive and affective neuroscience studies of emotional body perception as of today is lower than 20.Why then have whole bodies and bodily expressions not attracted the attention of researchers so far? The goal of this article is to contribute some elements for an answer to this question. I believe that there is something to learn from the historical neglect of bodies and bodily expressions. I will next address some historical misconceptions about whole-body perception, and in the process I intend not only to provide an impetus for this kind of work but also to contribute to a better understanding of the significance of the affective dimension of behaviour, mind and brain as seen from the vantage point of bodily communication. Subsequent sections discuss available evidence for the neurofunctional basis of facial and bodily expressions as well as neuropsychological and clinical studies of bodily expressions.  相似文献   

4.
The Coronavirus disease 2019 (COVID-19)” caused by the “severe acute respiratory syndrome corona virus 2 (SARS-CoV-2)” has caused huge losses to the world due to the unavailability of effective treatment options. It is now a serious threat to humans as it causes severe respiratory disease, neurological complications, and other associated problems. Although COVID-19 generally causes mild and recoverable symptoms in children, it can cause serious severe symptoms and death causing complications. Most importantly, SARS-CoV-2 can cause neurological complications in children, such as shortness of breath, myalgia, stroke, and encephalopathy. These problems are highly linked with cytokine storm and proinflammatory responses, which can alter the physiology of the blood-brain barrier and allow the virus to enter the brain. Despite the direct infection caused by the virus entry into the brain, these neurological complications can result from indirect means such as severe immune responses. This review discusses viral transmission, transport to the brain, the associated prenatal stress, and neurological and/or immunological complications in children.  相似文献   

5.
Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology.  相似文献   

6.
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by varying degrees of dysfunctional communication and social interactions, repetitive and stereotypic behaviors, as well as learning and sensory deficits. Despite the impressive rise in the prevalence of autism during the last two decades, there are few if any clues for its pathogenesis, early detection or treatment. Increasing evidence indicates high brain expression of pro-inflammatory cytokines and the presence of circulating antibodies against brain proteins. A number of papers, mostly based on parental reporting on their children's health problems, suggest that ASD children may present with “allergic-like” problems in the absence of elevated serum IgE and chronic urticaria. These findings suggest non-allergic mast cell activation, probably in response to environmental and stress triggers that could contribute to inflammation. In utero inflammation can lead to preterm labor and has itself been strongly associated with adverse neurodevelopmental outcomes. Premature babies have about four times higher risk of developing ASD and are also more vulnerable to infections, while delayed development of their gut-blood-brain barriers makes exposure to potential neurotoxins likely. Perinatal mast cell activation by infectious, stress-related, environmental or allergic triggers can lead to release of pro-inflammatory and neurotoxic molecules, thus contributing to brain inflammation and ASD pathogenesis, at least in a subgroup of ASD patients. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

7.

Background

In the human visual system, different attributes of an object, such as shape, color, and motion, are processed separately in different areas of the brain. This raises a fundamental question of how are these attributes integrated to produce a unified perception and a specific response. This “binding problem” is computationally difficult because all attributes are assumed to be bound together to form a single object representation. However, there is no firm evidence to confirm that such representations exist for general objects.

Methodology/Principal Findings

Here we propose a paired-attribute model in which cognitive processes are based on multiple representations of paired attributes. In line with the model''s prediction, we found that multiattribute stimuli can produce an illusory perception of a multiattribute object arising from erroneous integration of attribute pairs, implying that object recognition is based on parallel perception of paired attributes. Moreover, in a change-detection task, a feature change in a single attribute frequently caused an illusory perception of change in another attribute, suggesting that multiple pairs of attributes are stored in memory.

Conclusions/Significance

The paired-attribute model can account for some novel illusions and controversial findings on binocular rivalry and short-term memory. Our results suggest that many cognitive processes are performed at the level of paired attributes rather than integrated objects, which greatly facilitates the binding problem and provides simpler solutions for it.  相似文献   

8.
The central nervous system is separated from the rest of the body by the blood-brain barrier. This barrier prevents many substances, such as the antibodies, to penetrate into the brain making it difficult to use them for the treatment of brain diseases, such as tetanus and botulism. These two diseases are caused by the development of bacilli of the genus Clostridium which release neurotropic toxins. Specific antibodies can neutralize toxin activity when the toxin is in the blood but are ineffective when it is transported into nerve cells. Various invasive strategies have been used to deliver antibodies to the brain. However, they can induce seizures and transient neurologic deficits and may be applicable only for diseases restricted to the brain surface. Physiologically based strategies utilizing transport systems naturally present at the blood-brain barrier appear to be a more promising approach to brain delivery of antibodies. Cationization is a chemical treatment that causes the conversion of superficial carboxyl groups on a protein into extended primary amino groups. This is used to increase interactions of this protein with the negative charges at the luminal plasma membrane of the brain endothelial cells. The cationized protein can then undergo adsorptive mediated transcytosis through the blood-brain barrier. There are many problems yet to be solved in successfully carrying out in vivo applications of cationized antibodies. One of these problems is that cationization can cause damage to an antibody molecule and, thus, can compromise its binding affinity. Depending on the radiolabelling of the cationized antibodies, a serum inhibition phenomenon can possibly alter the pharmacokinetics and the organ distribution of these molecules. The antibodies can be cationized using various, synthetic (hexamethylenediamine) or naturally occuring (e.g., putrescine) polyamines. Hexamethylenediamine-induced and putrescine-induced brain uptakes of various antibodies and proteins have been shown, but the results obtained suggest that cationization with putrescine may be a more efficient approach to blood-brain barrier delivery. The development of animal or cellular models to check for therapeutic efficacy of cationized antibodies is necessary. In spite of the difficulties, the studies described in this paper indicate that cationization can be a realistic delivery strategy for carrying antibodies across the blood-brain barrier. The advances made in antibody technologies help generate more appropriate immunological structures for brain transfer with better effector functions and decreased immunogenicity or toxicity. Taken together, these two aspects can lead to further developments in treatment of intoxications caused by the clostridial neurotoxins.  相似文献   

9.
10.
The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)1, 2 protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis, for the purpose of monitoring task-relevant brain activity in networks of interest.  相似文献   

11.
Saygin AP  Cook J  Blakemore SJ 《PloS one》2010,5(10):e13491

Background

Perception of biological motion is linked to the action perception system in the human brain, abnormalities within which have been suggested to underlie impairments in social domains observed in autism spectrum conditions (ASC). However, the literature on biological motion perception in ASC is heterogeneous and it is unclear whether deficits are specific to biological motion, or might generalize to form-from-motion perception.

Methodology and Principal Findings

We compared psychophysical thresholds for both biological and non-biological form-from-motion perception in adults with ASC and controls. Participants viewed point-light displays depicting a walking person (Biological Motion), a translating rectangle (Structured Object) or a translating unfamiliar shape (Unstructured Object). The figures were embedded in noise dots that moved similarly and the task was to determine direction of movement. The number of noise dots varied on each trial and perceptual thresholds were estimated adaptively. We found no evidence for an impairment in biological or non-biological object motion perception in individuals with ASC. Perceptual thresholds in the three conditions were almost identical between the ASC and control groups.

Discussion and Conclusions

Impairments in biological motion and non-biological form-from-motion perception are not across the board in ASC, and are only found for some stimuli and tasks. We discuss our results in relation to other findings in the literature, the heterogeneity of which likely relates to the different tasks performed. It appears that individuals with ASC are unaffected in perceptual processing of form-from-motion, but may exhibit impairments in higher order judgments such as emotion processing. It is important to identify more specifically which processes of motion perception are impacted in ASC before a link can be made between perceptual deficits and the higher-level features of the disorder.  相似文献   

12.
In male songbirds, the song control pathway in the forebrain is responsible for song production and learning, and in females it is associated with the perception and discrimination of male song. However, experiments using the expression of immediate early genes (IEGs) reveal the activation of brain regions outside the song control system, in particular the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM). In this study on female canaries, we investigate the role of these two regions in relation to playback of male songs of different quality. Male canaries produce elaborate songs and some contain syllables with a more complex structure (sexy syllables) that induce females to perform copulation solicitation displays (CSD) as an invitation to mate. Females were first exposed to playback of a range of songs of different quality, before they were finally tested with playback of songs containing either sexy or nonsexy syllables. We then sectioned the brains and used in situ hybridization to reveal brain regions that express the IEGs ZENK or Arc. In CMM, expression of ZENK mRNA was significantly higher in females that last heard sexy syllables compared to those that last heard nonsexy syllables, but this was not the case for NCM. Expression of Arc mRNA revealed no differences in either CMM or NCM in both experimental groups. These results provide evidence that in female canaries CMM is involved in female perception and discrimination of male song quality through a mechanism of memory reconsolidation. The results also have further implications for the evolution of complex songs by sexual selection and female choice.  相似文献   

13.
The concept of a brain renin-angiotensin system originated with the observation that the components necessary for the formation of angiotensin II are present in the central nervous system. This observation has been confirmed and extended, and it is now frequently assumed that there is a functional brain renin-angiotensin system. However, careful analysis of the available evidence has revealed a number of significant problems. It appears that most of the renin-like activity measured in extracts of brain is due to the acid protease cathepsin D; this is unlikely to function as an angiotensin-forming enzyme in vivo. Experiments involving central administration of renin substrate have not provided convincing evidence for a significant renin-renin substrate interaction in vivo. Attempts to demonstrate the presence of angiotensin in the brain have been plagued with problems of specificity and it is still not clear if the peptide is actually present in the central nervous system. These problems do not rule out the possibility that there is a brain renin-angiotensin system, but more definitive evidence is required before it can be concluded that such a tensin system exists.  相似文献   

14.
Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy.This article is part of the themed issue ‘Vision in our three-dimensional world’.  相似文献   

15.
Loudness perception is thought to be a modular system that is unaffected by other brain systems. We tested the hypothesis that loudness perception can be influenced by negative affect using a conditioning paradigm, where some auditory stimuli were paired with aversive experiences while others were not. We found that the same auditory stimulus was reported as being louder, more negative and fear-inducing when it was conditioned with an aversive experience, compared to when it was used as a control stimulus. This result provides support for an important role of emotion in auditory perception.  相似文献   

16.
17.
Visual perception can be modulated by sounds. A drastic example of this is the sound-induced flash illusion: when a single flash is accompanied by two bleeps, it is sometimes perceived in an illusory fashion as two consecutive flashes. However, there are strong individual differences in proneness to this illusion. Some participants experience the illusion on almost every trial, whereas others almost never do. We investigated whether such individual differences in proneness to the sound-induced flash illusion were reflected in structural differences in brain regions whose activity is modulated by the illusion. We found that individual differences in proneness to the illusion were strongly and significantly correlated with local grey matter volume in early retinotopic visual cortex. Participants with smaller early visual cortices were more prone to the illusion. We propose that strength of auditory influences on visual perception is determined by individual differences in recurrent connections, cross-modal attention and/or optimal weighting of sensory channels.  相似文献   

18.
The neural correlates of visual awareness are elusive because of its fleeting nature. Here we have addressed this issue by using single trial statistical “brain reading” of neurophysiological event related (ERP) signatures of conscious perception of visual attributes with different levels of saliency. Behavioral reports were taken at every trial in 4 experiments addressing conscious access to color, luminance, and local phase offset cues. We found that single trial neurophysiological signatures of target presence can be observed around 300 ms at central parietal sites. Such signatures are significantly related with conscious perception, and their probability is related to sensory saliency levels. These findings identify a general neural correlate of conscious perception at the single trial level, since conscious perception can be decoded as such independently of stimulus salience and fluctuations of threshold levels. This approach can be generalized to successfully detect target presence in other individuals.  相似文献   

19.
Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception.  相似文献   

20.
Understanding the extent and limits of non-conscious processing is an important step on the road to a thorough understanding of the cognitive and cerebral correlates of conscious perception. In this article, we present a critical review of research on subliminal perception during masking and other related experimental conditions. Although initially controversial, the possibility that a broad variety of processes can be activated by a non-reportable stimulus is now well established. Behavioural findings of subliminal priming indicate that a masked word or digit can have an influence on perceptual, lexical and semantic levels, while neuroimaging directly visualizes the brain activation that it evokes in several cortical areas. This activation is often attenuated under subliminal presentation conditions compared to consciously reportable conditions, but there are sufficiently many exceptions, in paradigms such as the attentional blink, to indicate that high activation, per se, is not a sufficient condition for conscious access to occur. We conclude by arguing that for a stimulus to reach consciousness, two factors are jointly needed: (i) the input stimulus must have enough strength (which can be prevented by masking) and (ii) it must receive top-down attention (which can be prevented by drawing attention to another stimulus or task). This view leads to a distinction between two types of non-conscious processes, which we call subliminal and preconscious. According to us, maintaining this distinction is essential in order to make sense of the growing neuroimaging data on the neural correlates of consciousness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号