首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of growth temperature on the binding of Candida albicans to human buccal epithelial cells (BECs) was examined using an equilibrium of binding analysis. Candida albicans was cultured in M9 medium either for 12 h at 25 degrees C or for 9 h at 25 degrees C and then shifted to 37 degrees C for 3 h. The temperature shift did not result in germ tube formation; however, the adherence of C. albicans to BECs was altered. Shifting temperature increased the yeast's ability to bind to BECs. A Langmuir adsorption isotherm was used to calculate the maximum number of available binding sites (N) and the apparent association constants of binding (Ka) for all resolvable adhesin-receptor interactions. Three classes of adhesin-receptor interactions were resolved when the yeast was cultured at 25 degrees C and included a low copy number site (N = 3.0 cfu/BEC; Ka = 2.11 X 10(-6) mL/cfu), a medium copy number site (N = 23.6 cfu/BEC, Ka = 8.21 X 10(-7) mL/cfu), and a high copy number site (N = 91.7 cfu/BEC, Ka = 3.35 X 10(-8) mL/cfu). Two classes of adhesin-receptor interactions were resolved when the incubation temperature was shifted to 37 degrees C: a low copy number site (N = 4.5 cfu/BEC, Ka = 3.98 X 10(-6) mL/cfu) and a high copy number site (N = 150.5 cfu/BEC, Ka = 8.47 X 10(-8) mL/cfu). Augmented C. albicans adherence to BECs due to the elevated growth temperatures appears to result from a temperature-regulated alteration in the C. albicans adhesin that recognizes a high copy number receptor site with relatively low affinity.  相似文献   

2.
Effects of temperature on glucose transport in fat cells were studied. In this system, the basal (no insulin) glucose transport activity was higher at approximately 25-30 degrees C than at 37 degrees C, as previously reported (Vega, F. V., and Kono, T. (1979) Arch. Biochem. Biophys. 192, 120-127). The stimulatory effect of low temperature (or the insulin-like effect) was reversible and apparently required metabolic energy for both its forward and reverse reactions. By lowering the ATP level with 2,4-dinitrophenol, one could separately determine the insulin-like stimulatory effect of low temperature and its inhibitory effect on the transport process itself. The maximum level of stimulation by low temperature was greater at 10 degrees C than at 25-30 degrees C, but the rate of stimulation was considerably slower at 10 degrees C than at 25-30 degrees C. When cells were exposed to low temperature, the glucose transport activity in the plasma membrane-rich fraction was increased, while that in the Golgi-rich fraction was decreased. The Arrhenius plot of the basal glucose transport activity determined in the presence of dinitrophenol was apparently linear from 10 to 37 degrees C and parallel to that of the plus insulin activity measured either in the presence or absence of dinitrophenyl. Insulin itself slowly stimulated the glucose transport activity at 10 degrees C. These results are consistent with the view that (a) low temperature, like insulin, induces translocation of the glucose transport activity from an intracellular storage site to the plasma membrane, (b) insulin stimulates glucose transport activity without changing its activation energy, and (c) subcellular membranes do not entirely stop their movement at a low temperature, e.g, at 10 degrees C.  相似文献   

3.
Goldfish (Carasius auratus) primary culture cells derived from caudal fin were incubated over a temperature range of 20-35 degrees C. The population doubling time of cells cultured at 20, 25, 30 and 35 degrees C were 34, 29, 17 and 14 h, respectively. Interestingly, cDNA-representational difference analysis revealed type I collagen alpha chain (colalpha(I)) as a candidate for a warm temperature-specific gene. mRNA levels of colalpha(I) increased with an increase of incubation temperature and days of culture. Furthermore, the cell growth rate and colalpha(I) mRNA levels were rapidly changed following temperature shifts. To examine the effects of culture temperature shift on the cellular physiological states, mRNA levels of HSP70 were additionally investigated. HSP70 mRNA levels in the cells cultured at 30 and 35 degrees C were again 2-3 times higher than those at 20 and 25 degrees C. When the culture temperature was shifted from 20 to 35 degrees C, HSP70 mRNA levels were rapidly increased within 1 h. Subsequently, mRNA levels of the 35 degrees C-treated cells decreased, but remained doubled compared with those of the 20 degrees C-treated cells, even 4 h following the temperature shift. When the culture temperature was lowered from 35 to 20 degrees C, HSP70 mRNA levels decreased to about 70% of the original levels in 4 h. These results indicate that goldfish cells cultured at different temperatures easily develop temperature-associated steady physiological states within 4 h of temperature shifts.  相似文献   

4.
Tissue culture cells of Streptanthus tortuosus var. orbiculatus (Cruciferae) which have acquired a spherical viruslike particle located in their nucleoli, designated cell line STV, developed supergranal chloroplasts and lost the ability to differentiate vascular tissues. The effect of temperature on the ultrastructural cytology of one line of the STV tissue, STV-I, was compared with the effect of temperature on the ultrastructural cytology of tissue culture cells lacking the viruslike particles (control cell lines). At 4 C, the cellular and ultrastructural appearance of control tissue culture cells differed from that of tissue grown at 22 C by producing increased amounts of endoplasmic reticulum and dictyosomes and by reduction of chloroplast thylakoids. STV-I cells were generally moribund as a result of 4 C treatment. Chloroplast thylakoids were also reduced in control tissue following growth at 10 C and the apparent quantities of endoplasmic reticulum and dictyosomes were similar to those observed in control cells grown at the control temperature (22 C), but less than those observed in tissue subjected to 4 C. STV-I tissue grown at 10 C demonstrated increased endoplasmic reticulum and dictyosomes and reduction of polysomal configurations. The mitochondrial morphology was variable and the cells contained supergranal chloroplasts and proplastids. At the control temperature (22 C), the fine structural appearance of control tissue culture cells was typical of parenchyma cells, but STV-I cells contained mitochondria of variable morphology and two types of chloroplasts— normal and supergranal. Control tissue grown at 30 C also contained proplastids, but these proplastids contained starch in contrast to the proplastids in control tissue grown at low temperatures. The ultrastructural cytology of STV-I cells grown at elevated temperature (30 C) was characterized by enlarged mitochondria containing massive lipid bodies and the presence of protoplastids with starch and supergranal chloroplasts.  相似文献   

5.
Three geographically distinct-reared strains (Canadian, Icelandic, Norwegian) of juvenile Atlantic halibut (Hippoglossus hippoglossus L.) cultured at optimal and super-optimal growth temperatures (12 and 18 degrees C respectively), were challenged with a virulent isolate of Vibrio anguillarum by injection. The halibut were injected intraperitoneally with 100 microl of the bacterial suspension (1 x 10(6) cells per fish). After challenge, temperature and strain-related differences in survival were observed. Canadian and Icelandic halibut cultured at the super-optimal temperature of 18 degrees C were significantly more susceptible to infection than those strains cultured at 12 degrees C. Total mortality at 18 degrees C for the Canadian and Icelandic strains was 56.4 and 61.85% respectively, compared to 32 and 26.6% respectively at 12 degrees C. Norwegian halibut were significantly more resistant to infection with V. anguillarum at 18 degrees C compared to the other strains, with total mortality of 13.3%. There was no significant difference in total mortality of Norwegian halibut at 18 or 12 degrees C (13.3, 25% respectively). The specificity of the antibodies in sera from challenged halibut cultured at 18 degrees C was primarily to LPS. Immunoblots showed the presence of antibodies against O-side chain antigens. This reaction was strongest in sera from the Norwegian halibut strain compared with the Canadian and Icelandic halibut, which suggests that the difference in resistance to challenge may be ascribable to the presence of antibodies to LPS. Specific antibody levels, as measured by ELISA, increased with increasing temperature and strain differences were apparent, however these did not relate to disease resistance.  相似文献   

6.
Summary Inactivation of Candida albicans by ultraviolet (uv) light is markedly dependent upon (a) the cell division stage and (b) the nutrition and growth temperatures of cells both before and after irradiation. Cells grown at 37°C after irradiation show lower survivals than those grown at 25°C. At either recovery temperature, cells which had been cultured before irradiation at 37°C are able to sustain less uv damage prior to inactivation than those cultured at 25°C. The radiosensitivities of budding and non-budding cells are the same when survivals are scored at 25°C; at low uv dosages, cells show slightly poorer recoveries on enriched medium than on minimal medium whereas at higher dosages, their recoveries on both kinds of media are equivalent. In contrast, at 37°C, uv treated non-budding cells are much more susceptible to inactivation than budding cells; non-budding cells also express much poorer recovery on enriched medium than on minimal medium at 37°C whereas budding cells survive equally well on either medium. Though non-budding cells grown for irradiation on minimal or enriched media exhibit the same radiosensitivites, budding cells grown for irradiation on enriched medium are more susceptible to inactivation at 37°C than those grown on minimal medium.The particularly poor recovery by irradiated non-budding cells at 37°C is correlated with their unique tendency to undergo a transitory filamentation when initiating growth at that temperature. Evidence is presented that neither the filamentous growth per se nor the temporary inhibition of cell division associated with filamentation causes the poor recovery. Furthermore, while irradiated non-budding cells at 37°C exhibit singular susceptibility to inhibition of recovery by metabolic antagonists which disturb protein synthesis, the course of their filamentous growth is not affected by such agents. It is concluded that recovery from irradiation and the instigation of cytokinesis by non-budding cells of C. albicans result from different metabolic processes which may be related through a common temperature sensitive step. C. albicans does not photoreactivate and observations on recovery by cells prevented from undergoing immediate postirradiation replication do not indicate the existence of a system for dark repair of DNA damage comparable to that occurring in bacteria. Difficulties attending a valid demonstration of DNA dark repair in yeasts are discussed.  相似文献   

7.
Miraglia, Gennaro J. (Bryn Mawr College, Bryn Mawr, Pa.) and L. Joe Berry. Enhancement of salmonellosis and emergence of secondary infection in mice exposed to cold. J. Bacteriol. 84:1173-1180. 1962.-The ld(50) dose for mice of Salmonella typhimurium, strain RIA, is 4.1 x 10(5) for animals individually housed without bedding and maintained at 25 C. It is 3.8 x 10(3) for animals similarly housed but kept at 5 C. An intravenous injection of 0.1 ml of Proferrin 2 hr prior to infection with RIA lowers the ld(50) to 4.9 x 10(3) and to 4.0 x 10(1) for mice kept, respectively, at 25 and at 5 C. Low environmental temperature and "blockade" of the reticuloendothelial system (RES) lower the resistance of mice to about the same degree, but low temperature and RES impairment together lower resistance as if each were acting independently. No effect of cold could be detected in mice infected with the highly virulent SR-11 strain of S. typhimurium, since all animals died after infection with only a few cells. Mice that were natural carriers of salmonellae, as judged by fecal discharge, were highly resistant to challenge and responded to cold in a manner similar to normal mice infected with RIA. Strain RIA could be isolated from the tissues of infected animals with greater frequency and persisted longer in mice maintained at 5 C than those at 25 C. Staphylococci were isolated from livers of animals that survived salmonella infection for 14 days at 5 C, and the incidence of staphylococci was proportional to the number of salmonellae injected. At 25 C, only a small percentage of mice had staphylococci in tissues and these occurred independent of the infectious dose of salmonellae. These observations were made on normal mice infected with RIA and on carrier mice infected with SR-11.  相似文献   

8.
为了探索短期温度变化对群体微囊藻和单细胞微囊藻的影响, 在室内受控模拟条件下研究了在10℃、25℃和35℃三个温度梯度下, 群体和单细胞微囊藻对短期温度变化的生理响应。研究表明: 与对照组25℃相比, 在10℃培养下, 微囊藻叶绿素浓度显著降低, SOD活性和死亡率均显著增加。与群体微囊藻相比, 在10℃下单细胞微囊藻叶绿素浓度显著下降, Fv/Fm下降, SOD活性显著增加。在35℃培养下, 单细胞微囊藻叶绿素浓度上升, 死亡率和SOD活性增加, 而群体微囊藻则呈现出叶绿素浓度和死亡率降低, CAT活性增加。结果表明短期的温度变化影响了群体和单细胞微囊藻生理机制, 与单细胞微囊藻相比, 群体更能适应短期的温度胁迫, 导致其更具优势。  相似文献   

9.
To note the effect of temperature on survival, growth and fecundity, newly hatched (zero day old) snails Indoplanorbis exustus were cultured at 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees and 35 degrees C constant temperatures and room temperature (17.5 degrees-32.5 degrees C). Individuals exposed to 10 degrees C died within 3 days while those reared at 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees C and room temperature survived for a period of 6, 27, 18, 16, 12 and 17 weeks respectively. An individual added on an average 0.21 mm and 0.45 mg, 0.35 mm and 7.94 mg, 0.63 mm and 15.5 mg, 0.81 mm and 27.18 mg, 1.07 mm and 41.48 mg and 0.78 mm and 31.2 mg to the shell diameter and body weight respectively at those temperatures per week. The snails cultured at 15 degrees C died prior to attainment of sexual maturity. On an average, an individual produced 31.9 and 582.77, 54.86 and 902.18, 56.01 and 968.45, 49.32 and 798.68 and 62.34 and 1143.97 capsules and eggs respectively at 20 degrees, 25 degrees, 30 degrees, 35 degrees C and room temperature (17.5 degrees-32.5 degrees C).  相似文献   

10.
This study evaluated the influence of temperature on the immune responses and hematological parameters in channel catfish Ictalurus punctatus immunized via intraperitoneal injection with live theronts of Ichthyophthirius multifiliis. Fish were distributed in 18 aquaria and received 9 treatments: 4 groups of fish were vaccinated with live theronts and maintained at constant temperature 15 °C, 20 °C, 25 °C and 30 °C; 3 groups of fish vaccinated and subjected to cycling temperature regime from 15-25 °C, 20-25 °C and 20-30 °C, changed 5 °C each day; 2 groups of fish were not vaccinated and served as controls at 25 °C, one with Ich challenge and the other without challenge. Non vaccinated fish and those vaccinated at 15 °C or 15-25 °C did not show anti-Ich antibodies in the serum 14 and 21 days post-immunization. The antibody levels were significantly higher from fish vaccinated at 25 °C, 30 °C, 20-25 °C and 20-30 °C compared to fish at 15 °C, 20 °C and 15-25 °C both 14 and 21 days post-immunization. At constant water temperature, fish vaccinated at 15 °C showed significantly higher mortality rate (67.8%, P < 0.05) than those vaccinated at 20 °C, 25 °C, and 30 °C (0-10.7% mortalities). At cycling water temperature, fish vaccinated at 15-25 °C showed significantly higher mortality rate (67.8%) than those vaccinated at 20-25 °C and 20-30 °C (P < 0.05). Twenty days after immunization fish vaccinated at 30 °C and 20-30 °C showed significant increase in the red blood cells, white blood cells, thrombocytes and monocytes. Six days after challenge with I. multifiliis theronts the fish showed decreased white blood cells, thrombocytes and monocytes. This study suggests that vaccinated catfish were severely impacted by low temperature, either at 15 °C constant temperature or at 15-25 °C cycling temperature. The fish showed no anti-Ich antibodies and suffered high mortality similar to non vaccinated control fish.  相似文献   

11.
Summary Microscope cultures ofBrassica napus cv. Topas undergo high frequency embryogenesis in vitro; however, the majority of microspore-derived embryos do not develop directly into plants but usually undergo abnormal development including the formation of secondary embryos on the hypocotyls. The present studies show that older embryos or embryos cultured at higher temperature (25° C) were more likely to undergo secondary embryogenesis whereas embryos cultured at 20° C or pretreated at 5° to 10° C for 28 days developed more readily into normal plants. Compared with embryos cultured at 25° C, those cultured at 20° C gave a threefold increase in normal plant production. Pretreatments at cooler temperatures (5° to 10° C) resulted in an additional two-to threefold increase in the recovery of normal plants. Higher osmoticum during pretreatment improved embryo survival at low temperatures but generally inhibited normal plant development. Abscisic acid was ineffective or deleterious.  相似文献   

12.
Cell division rate, carbon fixation per cell, cell width and chloroplast length of Phaeodactylum tricornutum Bohlin were determined at 30 different combinations of light intensity and temperature. Division rate peaked at 23° C or less depending on light intensity. For each light intensity studied, carbon fixation increased directly with growth temperature from 14 to 25° C. The slope of this relationship was modified by light intensity. Cells grown at 23–25° C tended to be larger than those grown at lower temperatures, possibly due to increased carbon fixation per cell coupled with lower division rates. Chloroplasts were largest at a combination of temperatures above 21° C and low light intensities. This effect could cause cells to sink at a higher than normal rate due to reduced vacuole size and is presented as a possible mechanism affecting the distribution of P. tricornutum.  相似文献   

13.
We examined the thermokinetic behaviors of infective third-stage larvae (L3) of the rodent parasitic nematode Strongyloides ratti on temperature gradients using an in vitro agarose tracking assay method. Observed behaviors included both negative and positive thermokineses, the direction of movement depending both on the gradient temperature at which larvae were initially placed and on prior experience of culture temperature. Larvae isolated from rat feces cultured at 25 degrees C and placed on a gradient at temperatures between 22 degrees and 29 degrees C tended to move toward higher temperatures. At higher placement temperatures, most larvae moved little and showed no directional response, whereas at lower placement temperatures, many migrated toward cooler temperatures. At placement temperatures of 20 degrees C or below, few or no larvae moved toward the zone of higher temperature. Larvae isolated from rat feces cultured at 20 degrees C tended to migrate to a high temperature area regardless of placed temperature. Those cultured at 30 degrees C did not respond to the temperature gradient. L3 cultured at 30 degrees C were significantly less infective to rats than those cultured at 25 degrees or 20 degrees C. Additional experiments were designed to demonstrate thermokinetic behaviors during the period after reaching the L3 stage. Larvae incubated in double distilled water (DDW) for 24 h at 37 degrees C lost their ability to respond to lower temperatures, while in those incubated in DDW at 15 degrees and 25 degrees C, responses were still apparent. The thermokinetic behavior of S. ratti L3 is affected by surrounding environmental temperatures and this may have an important role in host finding.  相似文献   

14.
The effects of temperature on sister-chromatid exchange (SCE) frequency in Rat-1 embryo fibroblasts was investigated by culturing cells at 35 degrees C and 39 degrees C. Cells routinely cultured at 35 degrees C had a significantly lower SCE rate (0.1903 SCE/chromosome) than those routinely cultured at 39 degrees C (2.657 SCE/chromosome). When cells routinely cultured at 35 degrees C were transferred to 39 degrees C, their SCE rate increased to that of the 39 degrees C cells. However, 39 degrees C cells transferred to 35 degrees C did not show a decrease after 24 h acclimatization but after 48 h acclimatization their SCE rate had dropped to that of the 35 degrees C cells. Cells cultured at 35 degrees C had a longer cell cycle time than cells cultured at 39 degrees C, indicating that in Rat-1 cells increased cell cycle time does not result in increased SCE.  相似文献   

15.
Growth temperature affects both the structure and the phage-inactivating capacity of Salmonella anatum A1 lipopolysaccharide. Whereas S. anatum cells normally synthesize smooth lipopolysaccharide when grown at physiological temperature (37 degrees C), a partial smooth-rough transition occurs when cells are grown at low temperature (20 to 25 degrees C). The synthesis at low growth temperature of lipopolysaccharide molecules lacking O-antigen was detected both by increased sensitivity of cells to the rough-specific bacteriophage Felix O-1 and by fractionation of oligosaccharides derived from lipopolysaccharide by mild acid hydrolysis. Growth temperature-induced changes in the structure of S. anatum A1 lipopolysaccharide also affected its ability to inactivate epsilon15, a bacteriophage that binds initially to the O-antigen portion of the molecule. Purified lipopolysaccharide prepared from cells grown at low growth temperature exhibited a higher in vitro phage-inactivating capacity than did lipopolysaccharide prepared from cells grown at physiological temperature (37 degrees C).  相似文献   

16.
Escherichia coli K12 cells grown at higher temperatures and then subjected to lower temperatures produce fatty acids with higher unsaturated/saturated ratios than cells completely adapted to the lower temperatures (Okuyama et al. (1982) J. Biol. Chem. 257, 4812-4817). This hyper-response was not an artefact of chloramphenicol treatment and was observed when the shift-down was more than 20 degrees C in the cells grown at either 40 degrees C or 35 degrees C. In contrast, cells grown at either 25 degrees C or 30 degrees C showed no appreciable hyper-response in terms of unsaturated/saturated ratio on temperature shifts to as low as 10 degrees C. By combining shift-down and shift-up experiments, we could show the presence of different types of temperature dependency in the fatty acid-synthesizing systems of cells grown at various temperatures. Contrary to wild-type cells which synthesized mainly cis-vaccenate on down-shift to 10 degrees C, a mutant strain lacking beta-ketoacyl acyl-carrier protein synthase II synthesized more palmitoleate (16:1) and less palmitate at 10 degrees C than at 40 degrees C. The average chain lengths of saturated and unsaturated fatty acids also changed, but differently, between the mutant and wild-type cells on shifts of temperature. Thus, the mutant strain has a temperature-dependent fatty acid-synthesizing system qualitatively different from that seen in a wild-type strain.  相似文献   

17.
The influence of temperature on the biochemical composition of eight species of marine phytoplankton was investigated. Thalassiosira pseudonana Hasle and Heim-dal, Phaeodactylum tricornutum Bohlin and, Pavlova lutheri Droop (three of eight species studied) had minimum values of carbon and nitrogen quotas at intermediate temperatures resulting in a broad U-shaped response in quotas over the temperature range of 10 to 25°C. Protein per cell also had minimum values at intermediate temperatures for six species. For T. pseudonana, P. tricornutum, and P. lutheri, patterns of variation in carbon, nitrogen, and protein quotas as a function of temperature were similar. Over all species, lipid and carbohydrate per cell showed no consistent trends with temperature. Only chlorophyll a quotas and the carbon: chlorophyll a ratios (θ) showed consistent trends across all species. Chlorophyll a quotas were always lower at 10°C than at 25°C. Carbon: chlorophyll a ratios (θ) were always higher at 10°C than at 25°C. We suggest that although θ consistently increases at lower temperatures, the relationship between temperature and θ ranges from linear to exponential and is species specific. Accordingly, the interspecific variance in θ that results from species showing a range of possible responses to temperature increases as temperature declines and reaches a maximum at low temperatures. High photon flux densities appear to increase the potential interspecific variance in the carbon: chlorophyll a ratio and therefore exacerbate these trends.  相似文献   

18.
Total fatty acids in the pea aphid reared at low temperatures increased significantly compared to that at high rearing temperatures. This change is reflected in a large increase of myristic acid, which occurs exclusively in triacylglycerols. When aphids were moved from 25°C to a lower rearing temperature at 10°C, saturated fatty acids accumulated over time, reaching a maximum at 16th day. When aphids were moved to 4°C, a temperature below the developmental threshold, those aphids did not accumulate saturated fatty acids. Similar results were observed when aphids were exposed to sequential decrease in rearing temperature. However, both total fatty acids and myristic acid in the aphids from the treatments of sequential decreasing rearing temperature were significantly higher compared to those in the aphids from the treatments of sudden decreasing rearing temperature. This result, therefore, supports the hypothesis that cold‐adapted aphids can survive under threshold temperature for a longer period of time than noncold‐adapted aphids. Acetyl‐CoA carboxylase activity in the aphids at 25°C was twofold higher than that in the aphids at 10°C, whereas fatty acid synthase activities in the aphids reared at 25 and 10°C are similar. Aphids reared at 10°C showed a threefold reduction in reproduction rates. This reduced production of new nymphs reduces energy demand and would allow for accumulation of energy in the form of triacylglycerols. Therefore, the increased level of saturated fatty acids in aphids reared at low temperature is probably related to lower utilization of fatty acids rather than increased rates of biosynthesis.  相似文献   

19.
The composition of fatty acids and contents of eicosapentaenoic acid (EPA) and polyunsaturated fatty acids (PUFAs) of the economically important marine diatom, Phaeodactylum tricornutum (Bohlin), were investigated to see whether reducing the culture temperature enhances the production of EPA and PUFAs. The contents of EPA and PUFAs of P. tricornutum were found to be higher at lower temperature when cultured at 10, 15, 20, or 25°C. When the cells grown at 25°C were shifted to 20, 15, or 10°C, the contents per dry mass of PUFAs and EPA increased to the maximal values in 48, 24, and 12 h, respectively. The highest yields of PUFAs and EPA per unit dry mass (per unit volume of culture) were 4.9% and 2.6% (12.4 and 6.6 mg·L?1), respectively, when temperature was shifted from 25 to 10°C for 12 h, both being raised by 120% compared with the control. The representative fatty acids in the total fatty acids, when temperature was lowered from 25 to 10°C, decreased proportionally by about 30% in C16:0 and 20% in C16:1(n?7) but increased about 85% in EPA. It was concluded that lowering culture temperature of P. tricornutum could significantly raise the yields of EPA and PUFAs.  相似文献   

20.
Fowl spermatozoa were incubated at 41°C in a supernatant removed from a 4-day culture medium of embryonic chick skeletal muscle cells. Their motility, as assessed at room temperature (20–25°C), was maintained for 48 h. Fertilizing ability was also retained for at least 24 h. In contrast, spermatozoa incubated in the fresh culture medium lost their motility and fertilizing ability rapidly. A filtrate of the 4-day culture medium, obtained by passing the fluid through an Amicon PM-10 ultrafiltration membrane, prolonged the motility of spermatozoa. These results suggested that a low molecular weight factor(s) (mol. wt. < 10 000) supplied by the cultured cells effectively prolonged the motility of spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号