首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectrins are a family of widely distributed filamentous proteins. In association with actin, spectrins form a supporting and organizing scaffold for cell membranes. Using antibodies specific for human brain alpha-spectrin (alpha-fodrin), we have cloned a rat brain alpha-spectrin cDNA from an expression library. Several closely related human clones were also isolated by hybridization. Comparison of sequences of these and other overlapping nonerythroid and erythroid alpha-spectrin genes demonstrated that the nonerythroid genes are strictly conserved across species, while the mammalian erythroid genes have diverged rapidly. Peptide sequences deduced from these cDNAs revealed that the nonerythroid alpha-spectrin chain, like the erythroid spectrin, is composed of multiple 106-amino-acid repeating units, with the characteristic invariant tryptophan as well as other charged and hydrophobic residues in conserved locations. However, the carboxy-terminal sequence varies markedly from this internal repeat pattern and may represent a specialized functional site. The nonerythroid alpha-spectrin gene was mapped to human chromosome 9, in contrast to the erythroid alpha-spectrin gene, which has previously been assigned to a locus on chromosome 1.  相似文献   

2.
3.
4.
5.
6.
7.
Methicillin-resistant Staphylococcus aureus isolated in the community (CA-MRSA) have been reported to carry the loci for Panton Valentine leukocidin (PVL) in high frequency. CA-MRSA in Orebro County, Sweden, constitutes at least 50% of MRSA and the PVL locus is detected in as many as 66% of these CA-MRSA isolates. The aim of this study was to characterize PVL-positive methicillin-resistant and methicillin-susceptible Staphylococcus aureus by molecular methods, to determine the nucleotide sequence of lukS-PV and lukF-PV in S. aureus isolates of different origins, and to investigate the biological consequence of variations occurring in the genes. The PVL-positive MRSA investigated were composed of six different STs (ST8, 36, 80, 152, 154, and 256). Six additional STs (ST5, 22, 25, 30, 88, and 567) were detected when investigating PVL-positive methicillin-susceptible S. aureus with MLST. Despite the different genetic origins of the isolates analyzed, the PVL genes were well conserved and only one mutation was non-synonymous. Evaluation of the consequence of this mutation showed that the mutated toxin and wild-type toxin had comparable biological activity on human polymorphonuclear cells.  相似文献   

8.
cDNA clones encoding uricase have been isolated from a rabbit liver cDNA library. The nucleotide sequences of the cDNAs have been determined and those of the rat uricase cDNA have been revised. In all three uricases, the carboxy-terminal tripeptides are Ser-Arg/Lys-Leu sequences, which have recently been suggested as an essential element of peroxisomal targetting signals for many but not all peroxisomal proteins.  相似文献   

9.
10.
Summary Salt-soluble proteins from the endosperms of wheat, barley, and rye have been separated by nonequilibrium electrofocusing x electrophoresis. Genes encoding 14 of the 25 components observed in wheat have been unambiguously assigned to 10 different chromosomes (1B, 3B, 3D, 4A, 4D, 5B, 6B, 6D, 7B, 7D) by analysis of the compensated nulli-tetrasomic series. Five more wheat proteins seem to be controlled by group 2 chromosomes. Analysis of wheat-barley and wheat-rye addition lines has led to the location of genes for 6 out of 20 barley proteins in 4 different chromosomes (1H, 3H, 4H, 6H; 1H is homoeologous to group 7 chromosomes of wheat) and of genes for 5 out of 20 rye proteins in two different chromosomes (2R, 4R). The relationship between the proteins reported here and previously characterized ones is discussed.  相似文献   

11.
The nuclear large subunit (LSU) rRNA gene is a rich source of phylogenetic characters because of its large size, mosaic of slowly and rapidly evolving regions, and complex secondary structure variation. Nevertheless, many studies have indicated that inconsistency, bias, and gene-specific error (e.g., within-individual gene family variation, cryptic sequence simplicity, and sequence coevolution) can complicate animal phylogenies based on LSU rDNA sequences. However, most of these studies sampled small gene fragments from expansion segments--among animals only five nonchordate complete LSU sequences are published. In this study, we sequenced near-complete nuclear LSU genes from 11 representative daphniids (Crustacea). The daphniid expansion segment V6 was larger and showed more length variation (90-351 bp) than is found in all other reported LSU V6 sequences. Daphniid LSU (without the V6 region) phylogenies generally agreed with the existing phylogenies based on morphology and mtDNA sequences. Nevertheless, a major disagreement between the LSU and the expected trees involved a positively misleading association between the two taxa with the longest branches, Daphnia laevis and D. occidentalis. Both maximum parsimony (MP) and maximum likelihood (ML) optimality criteria recovered this association, but parametric simulations indicated that MP was markedly more sensitive to this bias than ML. Examination of data partitions indicated that the inconsistency was caused by increased nucleotide substitution rates in the branches leading to D. laevis and D. occidentalis rather than among-taxon differences in base composition or distribution of sites that are free to vary. These results suggest that lineage-specific rate acceleration can lead to long-branch attraction even in the conserved genes of animal species that are almost morphologically indistinguishable.  相似文献   

12.
The two fundamental types of photoreceptor cells have evolved unique structures to expand the apical membrane to accommodate the phototransduction machinery, exemplified by the cilia-based outer segment of the vertebrate photoreceptor cell and the microvilli-based rhabdomere of the invertebrate photoreceptor. The morphogenesis of these compartments is integral for photoreceptor cell integrity and function. However, little is known about the elementary cellular and molecular mechanisms required to generate these compartments. Here we investigate whether a conserved cellular mechanism exists to create the phototransduction compartments by examining the functional role of a photoreceptor protein common to both rhabdomeric and ciliated photoreceptor cells, Prominin. First and foremost we demonstrate that the physiological role of Prominin is conserved between rhabdomeric and ciliated photoreceptor cells. Human Prominin1 is not only capable of rescuing the corresponding rhabdomeric Drosophila prominin mutation but also demonstrates a conserved genetic interaction with a second photoreceptor protein Eyes Shut. Furthermore, we demonstrate the Prominin homologs in vertebrate and invertebrate photoreceptors require the same structural features and post-translational modifications for function. Moreover, expression of mutant human Prominin1, associated with autosomal dominant retinal degeneration, in rhabdomeric photoreceptor cells disrupts morphogenesis in ways paralleling retinal degeneration seen in ciliated photoreceptors. Taken together, our results suggest the existence of an ancestral Prominin-directed cellular mechanism to create and model the apical membranes of the two fundamental types of photoreceptor cells into their respective phototransduction compartments.  相似文献   

13.
Photosynthetic acclimation to CO2-limiting stress is associated with control of genetic and physiological responses through a signal transduction pathway, followed by integrated monitoring of the environmental changes. Although several CO2-responsive genes have been previously isolated, genome-wide analysis has not been applied to the isolation of CO2-responsive genes that may function as part of a carbon-concentrating mechanism (CCM) in photosynthetic eukaryotes. By comparing expression profiles of cells grown under CO2-rich conditions with those of cells grown under CO2-limiting conditions using a cDNA membrane array containing 10,368 expressed sequence tags, 51 low-CO2 inducible genes and 32 genes repressed by low CO2 whose mRNA levels were changed more than 2.5-fold in Chlamydomonas reinhardtii Dangeard were detected. The fact that the induction of almost all low-CO2 inducible genes was impaired in the ccm1 mutant suggests that CCM1 is a master regulator of CCM through putative low-CO2 signal transduction pathways. Among low-CO2 inducible genes, two novel genes, LciA and LciB, were identified, which may be involved in inorganic carbon transport. Possible functions of low-CO2 inducible and/or CCM1-regulated genes are discussed in relation to the CCM.  相似文献   

14.
15.
16.
Horio T  Oakley BR 《Plant physiology》2003,133(4):1926-1934
gamma-Tubulin localizes to microtubule-organizing centers in animal and fungal cells where it is important for microtubule nucleation. Plant cells do not have morphologically defined microtubule organizing centers, however, and gamma-tubulin is distributed in small, discrete structures along microtubules. The great difference in distribution has prompted speculation that plant gamma-tubulins function differently from animal and fungal gamma-tubulins. We tested this possibility by expressing Arabidopsis gamma-tubulin in the fission yeast Schizosaccharomyces pombe. At high temperatures, the plant gamma-tubulin was able to bind to microtubule-organizing centers, nucleate microtubule assembly, and support the growth and replication of S. pombe cells lacking endogenous gamma-tubulin. However, the distribution of microtubules was abnormal as was cell morphology, and at low temperatures, cells were arrested in mitosis. These results reveal that Arabidopsis gamma-tubulin can carry out essential functions in S. pombe and is, thus, functionally conserved. The morphological abnormalities reveal that it cannot carry out some nonessential functions, however, and they underscore the importance of gamma-tubulin in morphogenesis of fission yeast cells and in maintaining normal interphase microtubule arrays.  相似文献   

17.
18.

Background

The major histocompatibility complex (MHC) is the most important genomic region that contributes to the risk of graft versus host disease (GVHD) after haematopoietic stem cell transplantation. Matching of MHC class I and II genes is essential for the success of transplantation. However, the MHC contains additional genes that also contribute to the risk of developing acute GVHD. It is difficult to identify these genes by genetic association studies alone due to linkage disequilibrium in this region. Therefore, we aimed to identify MHC genes and other genes involved in the pathophysiology of GVHD by mRNA expression profiling.

Methodology/Principal Findings

To reduce the complexity of the task, we used genetically well-defined rat inbred strains and a rat skin explant assay, an in-vitro-model of the graft versus host reaction (GVHR), to analyze the expression of MHC, natural killer complex (NKC), and other genes in cutaneous GVHR. We observed a statistically significant and strong up or down regulation of 11 MHC, 6 NKC, and 168 genes encoded in other genomic regions, i.e. 4.9%, 14.0%, and 2.6% of the tested genes respectively. The regulation of 7 selected MHC and 3 NKC genes was confirmed by quantitative real-time PCR and in independent skin explant assays. In addition, similar regulations of most of the selected genes were observed in GVHD-affected skin lesions of transplanted rats and in human skin explant assays.

Conclusions/Significance

We identified rat and human MHC and NKC genes that are regulated during GVHR in skin explant assays and could therefore serve as biomarkers for GVHD. Several of the respective human genes, including HLA-DMB, C2, AIF1, SPR1, UBD, and OLR1, are polymorphic. These candidates may therefore contribute to the genetic risk of GVHD in patients.  相似文献   

19.
Xue JY  Wang Y  Wu P  Wang Q  Yang LT  Pan XH  Wang B  Chen JQ 《PloS one》2012,7(5):e36700
Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS) domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL) class and the other is the CC-NBS-LRR (CNL) class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK) domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL), reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an α/β-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL). Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号