首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
【目的】了解家蚕Bombyx mori维生素B6关键代谢酶磷酸吡哆醇氧化酶(pyridoxine- 5′-phosphate oxidase, PNPO)基因在家蚕不同发育阶段及5龄幼虫不同组织中的表达差异。【方法】将家蚕PNPO基因的重组表达质粒pET-22b(+)-PNPO转化入大肠杆菌Escherichia coli Rosetta中诱导表达, 纯化蛋白制备多克隆抗体。分别采用荧光定量PCR和Western blot方法对家蚕PNPO基因进行了转录水平和翻译水平的表达分析。【结果】在家蚕发育水平上, 5龄幼虫的PNPO翻译量为最高。PNPO基因在5龄幼虫各组织中的转录水平由高到低依次为精巢、 头、 中肠、 马氏管、 卵巢、 表皮、 脂肪体、 丝腺; 翻译量也以精巢为最高, 其次是头、 中肠和马氏管。【结论】明确了PNPO在家蚕各发育阶段及5龄幼虫各组织中的表达情况。  相似文献   

4.
The pur3 gene of the puromycin (pur) cluster from Streptomyces alboniger is essential for the biosynthesis of this antibiotic. Cell extracts from Streptomyces lividans containing pur3 had monophosphatase activity versus a variety of mononucleotides including 3'-amino-3'-dAMP (3'-N-3'-dAMP), (N6,N6)-dimethyl-3'-amino-3'-dAMP (PAN-5'-P) and AMP. This is in accordance with the high similarity of this protein to inositol monophosphatases from different sources. Pur3 was expressed in Escherichia coli as a recombinant protein and purified to apparent homogeneity. Similar to the intact protein in S. lividans, this recombinant enzyme dephosphorylated a wide variety of substrates for which the lowest Km values were obtained for the putative intermediates of the puromycin biosynthetic pathway 3'-N-3'-dAMP (Km = 1.37 mM) and PAN-5'-P (Km = 1.40 mM). The identification of this activity has allowed the revision of a previous proposal for the puromycin biosynthetic pathway.  相似文献   

5.
Apurinic/apyrimidinic (AP) endonuclease (Ape1) is the major cellular enzyme responsible for repairing AP-sites in DNA. It can cleave the DNA phosphodiester backbone immediately 5(') to an AP-site. Ape1 also shows 3(')-phosphodiesterase activity, a 3(')-phosphatase activity, and an RNaseH activity. However, regarding its exonuclease activity, it remains controversial whether human Ape1 may possess a 3(')-5(') exonuclease activity. During the course of study to search for the major nuclease activity to double-stranded DNA in human leukemia cells, we purified a 37 kDa Mg(2+)-dependent exonuclease from cytosolic fraction of human leukemia U937 cells. Surprisingly, this exonuclease is Ape1. We demonstrated for the first time that Ape1 possesses a significant activity as major 3(')-5(') exonuclease in human leukemia cells. In addition, we also observed that translocation of cytoplasmic Ape1 into nucleus occurs during DNA damage.  相似文献   

6.
We describe a method for the detection and quantification of nucleoside diphosphate kinase (NDPK). NDPK catalyzes the transfer of the gamma-phosphate of cytidine 5'-triphosphate on uridine 5'-diphosphate (UDP) to produce uridine 5'-triphosphate (UTP). The method uses a nonradioactive coupled enzyme assay in which UTP produced by NDPK is utilized by UDP-glucose pyrophosphorylase. This latter enzyme synthesizes UDP-glucose and inorganic phosphate in the presence of glucose 1-phosphate. UDP-glucose is detected at 260 nm after separation of the reaction mixture by high-performance liquid chromatography (HPLC) on a strong anion-exchange column. The assay is reliable, specific, and linear with respect to time and enzyme amount. Using 15 min incubation time, the method allows detection of NDPK activity below 10 pmol/min. It can be used to analyze kinetic behavior and to quantify NDPK from a wide variety of animal, microbial, and plant sources. It also provides an alternative to radiometric assays and an improvement on pyruvate kinase-linked spectrophotometric assays, which can be hampered by pigments present in crude extracts. Furthermore, we show that the HPLC method developed here can be directly used to assay enzymes for which UDP-glucose is a product.  相似文献   

7.
Summary In the present study the binding of [3H]MK-801 to glutamatergic receptors of the NMDA type was compared in spontaneously hypertensive (SHR) and normotensive (WKY) rats in various brain structures (including nucleus tractus solitarii) by quantitative receptor autoradiography. Additionally, blood pressure changes after treatment with the NMDA antagonist MK-801 were studied in both strains. There were no differences between SHR and WKY rats either in the level of [3H]MK-801 binding or in the hypertensive reaction to MK-801.  相似文献   

8.
The barley sdw1/denso gene not only controls plant height but also yield and quality. The sdw1/denso gene was mapped to the long arm of chromosome 3H. Comparative genomic analysis revealed that the sdw1/denso gene was located in the syntenic region of the rice semidwarf gene sd1 on chromosome 1. The sd1 gene encodes a gibberellic acid (GA)-20 oxidase enzyme. The gene ortholog of rice sd1 was isolated from barley using polymerase chain reaction. The barley and rice genes showed a similar gene structure consisting of three exons and two introns. Both genes share 88.3% genomic sequence similarity and 89% amino acid sequence identity. A single nucleotide polymorphism was identified in intron 2 between barley varieties Baudin and AC Metcalfe with Baudin known to contain the denso semidwarf gene. The single nucleotide polymorphism (SNP) marker was mapped to chromosome 3H in a doubled haploid population of Baudin × AC Metcalfe with 178 DH lines. Quantitative trait locus analysis revealed that plant height cosegregated with the SNP. The sdw1/denso gene in barley is the most likely ortholog of the sd1 in rice. The result will facilitate understanding of the molecular mechanism controlling semidwarf phenotype and provide a diagnostic marker for selection of semidwarf gene in barley. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Vitamin C deficient pigs, when fed a diet lacking L-ascorbic acid (AscA), manifest deformity of the legs, multiple fractures, osteoporosis, growth retardation and haemorrhagic tendencies. This trait was shown by others to be controlled by a single autosomal recessive allele designated as od (osteogenic disorder). The inability of AscA biosynthesis in primates and guinea pigs that exhibit similar symptoms, when they are not supplemented with AscA in the food, was traced to the lack of L-gulono-gamma-lactone oxidase, which catalyzes the terminal step in the biosynthesis of AscA. The non-functional GULOP was mapped to human chromosome 8p21 that corresponds to an evolutionarily conserved segment on either porcine chromosome 4 (SSC4) or 14 (SSC14). We investigated linkage between OD and SSC4- and 14-specific microsatellite loci in order to map the OD locus. Twenty-seven informative meioses in families from one sire and three dams revealed linkage of od with microsatellites SW857 and S0089, located in the subcentromeric region of SSC14. We isolated part of the GULO gene of the pig by screening a porcine genomic library using a pig GULO cDNA as a probe, and mapped it to SSC14q14 by fluorescence in situ hybridization (FISH). Thus, the porcine GULO gene is both a good physiological and positional candidate gene for vitamin C deficiency in pigs.  相似文献   

10.
Deoxycytidine nucleoside analogs must be first phosphorylated to become active anticancer drugs. The rate-limiting enzyme in this pathway is deoxycytidine kinase (dCK). Cells deficient in this enzyme are resistant to these analogs. To evaluate the potential of dCK to be used as suicide gene for deoxycytidine nucleoside analogs, we transduced both human A-549 lung carcinoma and murine NIH3T3 fibroblast cell lines with this gene. The dCK-transduced cells showed an increase in cytotoxicity to the analogs, cytosine arabinoside (ARA-C), and 5-aza-2'-deoxycytidine (5-AZA-CdR). Unexpectedly, the related analog, 2',2'-difluorodeoxycytidine (dFdC), was less cytotoxic to the dCK-transduced cells than the wild-type cells. For the A-549-dCK cells, the phosphorylation of dFdC by dCK was much greater than control cells. In accord with the elevated enzyme activity, we observed a 6-fold increased dFdC incorporation into DNA and a more pronounced inhibition of DNA synthesis in the A-549-dCK cells. In an attempt to clarify the mechanism of dFdC, we investigated its action on A549 and 3T3 cells transduced with both cytidine deaminase (CD) and dCK. We reported previously that overexpression of CD confers drug resistance to deoxycytidine analogs. In this study, when the CD-transduced cells were also transduced with dCK they became relatively more sensitive to dFdC. In addition, we observed that dFdU, the deaminated form of dFdC, was cytotoxic to the A-549-dCK cells, but not the wild-type cells. Our working hypothesis to explain these results is that the mitochondrial thymidine kinase (TK2), an enzyme reported to phosphorylate dFdC, acts as an important modulator of dFdC-induced cell toxicity. These findings may further clarify the action of dFdC and the mechanism by which it induces cell death.  相似文献   

11.
The Caenorhabditis elegans genome encodes a series of hedgehog-related genes, which are thought to have evolved and diverged from an ancestral Hh gene. They are classified into several families based on their N-terminal domains. Here, we analyze the expression and function of a member of the warthog gene family, wrt-5, that lacks the Hint/Hog domain. wrt-5 is expressed in seam cells, the pharynx, pharyngeal-intestinal valve cells, neurons, neuronal support cells, the excretory cell, and the reproductive system. WRT-5 protein is secreted into the extracellular space during embryogenesis. Furthermore, during larval development, WRT-5 protein is secreted into the pharyngeal lumen and the pharyngeal expression changes in a cyclical manner in phase with the molting cycle. Deletion mutations in wrt-5 cause embryonic lethality, which are temperature sensitive and more severe at 15 degrees C than at 25 degrees C. Animals that hatch exhibit variable abnormal morphology, for example, bagging worms, blistering, molting defects, or Roller phenotypes. We examined hypodermal cell junctions using the AJM-1Colon, two colonsGFP marker in the wrt-5 mutant background and observed cell boundary abnormalities in the arrested embryos. AJM-1Colon, two colonsGFP protein is also misplaced in pharyngeal muscle cells in the absence of WRT-5. In conclusion, we show that wrt-5 is an essential gene that - despite its lack of a Hint domain - has multiple functions in C. elegans and is implicated in cell shape integrity.  相似文献   

12.
Recently marketed genetically modified violet carnations cv. Moondust and Moonshadow (Dianthus caryophyllus) produce a delphinidin type anthocyanin that native carnations cannot produce and this was achieved by heterologous flavonoid 3',5'-hydroxylase gene expression. Since wild type carnations lack a flavonoid 3',5'-hydroxylase gene, they cannot produce delphinidin, and instead accumulate pelargonidin or cyanidin type anthocyanins, such as pelargonidin or cyanidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester. On the other hand, the anthocyanins in the transgenic flowers were revealed to be delphinidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester (main pigment), delphinidin 3,5-diglucoside-6"-malyl ester, and delphinidin 3,5-diglucoside-6",6"'- dimalyl ester. These are delphinidin derivatives analogous to the natural carnation anthocyanins. This observation indicates that carnation anthocyanin biosynthetic enzymes are versatile enough to modify delphinidin. Additionally, the petals contained flavonol and flavone glycosides. Three of them were identified by spectroscopic methods to be kaempferol 3-(6"'-rhamnosyl-2"'-glucosyl-glucoside), kaempferol 3-(6"'-rhamnosyl-2"'-(6-malyl-glucosyl)-glucoside), and apigenin 6-C-glucosyl-7-O-glucoside-6"'-malyl ester. Among these flavonoids, the apigenin derivative exhibited the strongest co-pigment effect. When two equivalents of the apigenin derivative were added to 1 mM of the main pigment (delphinidin 3,5-diglucoside-6"-O-4,6"'-O-1-cyclic-malyl diester) dissolved in pH 5.0 buffer solution, the lambda(max) shifted to a wavelength 28 nm longer. The vacuolar pH of the Moonshadow flower was estimated to be around 5.5 by measuring the pH of petal. We conclude that the following reasons account for the bluish hue of the transgenic carnation flowers: (1). accumulation of the delphinidin type anthocyanins as a result of flavonoid 3',5'-hydroxylase gene expression, (2). the presence of the flavone derivative strong co-pigment, and (3). an estimated relatively high vacuolar pH of 5.5.  相似文献   

13.
Human thymidine kinase 1 (hTK1) and structurally related TKs from other organisms catalyze the initial phosphorylation step in the thymidine salvage pathway. Though ATP is known to be the preferred phosphoryl donor for TK1-like enzymes, its exact binding mode and effect on the oligomeric state has not been analyzed. Here we report the structures of hTK1 and of the Thermotoga maritima thymidine kinase (TmTK) in complex with the bisubstrate inhibitor TP4A. The TmTK-TP4A structure reveals that the adenosine moiety of ATP binds at the subunit interface of the homotetrameric enzyme and that the majority of the ATP-enzyme interactions occur between the phosphate groups and the P-loop. In the hTK1 structure the adenosine group of TP4A exhibited no electron density. This difference between hTK1 and TmTK is rationalized by a difference in the conformation of their quaternary structure. A more open conformation, as seen in the TmTK-TP4A complex structure, is required to provide space for the adenosine moiety. Our analysis supports the formation of an analogous open conformation in hTK1 upon ATP binding.  相似文献   

14.
15.
D-Amino acid oxidase (DAO), a potential risk factor for schizophrenia, has been proposed to be involved in the decreased glutamatergic neurotransmission in schizophrenia. Here we show the inhibitory effect of an antipsychotic drug, chlorpromazine, on human DAO, which is consistent with previous reports using porcine DAO, although human DAO was inhibited to a lesser degree (Ki = 0.7 mM) than porcine DAO. Since chlorpromazine is known to induce phototoxic or photoallergic reactions and also to be transformed into various metabolites, we examined the effects of white light-irradiated chlorpromazine on the enzymatic activity. Analytical methods including high-resolution mass spectrometry revealed that irradiation triggered the oligomerization of chlorpromazine molecules. The oligomerized chlorpromazine showed a mixed type inhibition with inhibition constants of low micromolar range, indicative of enhanced inhibition. Taken together, these results suggest that oligomerized chlorpromazine could act as an active substance that might contribute to the therapeutic effects of this drug.  相似文献   

16.
Heterotetrameric sarcosine oxidase (TSOX) is a complex bifunctional flavoenzyme that contains two flavins. Most of the FMN in recombinant TSOX is present as a covalent adduct with an endogenous ligand. Enzyme denaturation disrupts the adduct, accompanied by release of a stoichiometric amount of sulfide. Enzyme containing>or=90% unmodified FMN is prepared by displacement of the endogenous ligand with sulfite, a less tightly bound competing ligand. Reaction of adduct-depleted TSOX with sodium sulfide produces a stable complex that resembles the endogenous TSOX adduct and known 4a-S-cysteinyl flavin adducts. The results provide definitive evidence for sulfide as the endogenous TSOX ligand and strongly suggest that the modified FMN is a 4a-sulfide adduct. A comparable reaction with sodium sulfide is not detected with other flavoprotein oxidases. A model of the postulated TSOX adduct suggests that it is stabilized by nearby residues that may be important in the electron transferase/oxidase function of the coenzyme.  相似文献   

17.
Plant sterols and their hydrogenated forms, stanols, have attracted much attention because of their benefits to human health in reducing serum and LDL cholesterol levels, with vegetable oil processing being their major source in several food products currently sold. The predominant forms of plant sterol end products are sitosterol, stigmasterol, campesterol and brassicasterol (in brassica). In this study, 3-hydroxysteroid oxidase from Streptomyces hygroscopicus was utilized to engineer oilseeds from rapeseed (Brassica napus) and soybean (Glycine max), respectively, to modify the relative amounts of specific sterols to stanols. Each of the major phytosterols had its C-5 double bond selectively reduced to the corresponding phytostanol without affecting other functionalities, such as the C-22 double bond of stigmasterol in soybean seed and of brassicasterol in rapeseed. Additionally, several novel phytostanols were obtained that are not produced by chemical hydrogenation of phytosterols normally present in plants.  相似文献   

18.
The methylation patterns of cytosine and adenine residues in the Arabidopsis thaliana gene for domains rearranged methyltransferase (DRM2) were studied in wild-type and several transgene plant lines containing antisense fragments of the cytosine DNA-methyltransferase gene METI under the control of copper-inducible promoters. It was shown that the promoter region of the DRM2 gene is mostly unmethylated at the internal cytosine residue in CCGG sites whereas the 3'-end proximal part of the gene coding region is highly methylated. The DRM2 gene was found to be also methylated at adenine residues in some GATC sequences. Cytosine methylation in CCGG sites and adenine methylation in GATC sites in the DRM2 gene are variable between wild-type and different transgenic plants. The induction of antisense METI constructs with copper ions in transgene plants in most cases leads to further alterations in the DRM2 gene methylation patterns.  相似文献   

19.
Although increasing evidence has suggested that the hMSH5 protein plays an important role in meiotic and mitotic DNA recombinational repair, its precise functions in recombination and DNA damage response are presently elusive. Here we show that the interaction between hMSH5 and c-Abl confers ionizing radiation (IR)-induced apoptotic response by promoting c-Abl activation and p73 accumulation, and these effects are greatly enhanced in cells expressing hMSH5P29S (i.e. the hMSH5 variant possessing a proline to serine change within the N-terminal (Px)5 dipeptide repeat). Our current study provides the first evidence that the (Px)5 dipeptide repeat plays an important role in modulating the interaction between hMSH5 and c-Abl and alteration of this dipeptide repeat in hMSH5P29S leads to increased IR sensitivity owing to enhanced caspase-3-mediated apoptosis. In addition, RNAi-mediated hMSH5 silencing leads to the reduction of apoptosis in IR-treated cells. In short, this study implicates a role for hMSH5 in DNA damage response involving c-Abl and p73, and suggests that mutations impairing this process could significantly affect normal cellular responses to anti-cancer treatments.  相似文献   

20.
Choline oxidase catalyzes the oxidation of choline to glycine betaine via two sequential flavin-linked transfers of hydride equivalents to molecular oxygen and formation of a betaine aldehyde intermediate. In the present study, choline and glycine betaine analogs were used as substrates and inhibitors for the enzyme to investigate the structural determinants that are relevant for substrate recognition and specificity. Competitive inhibition patterns with respect to choline were determined for a number of substituted amines at pH 6.5 and 25 degrees C. The Kis values for the carboxylate-containing ligands glycine betaine, N,N-dimethylglycine, and N-methylglycine increased monotonically with decreasing number of methyl groups, consistent with the trimethylammonium portion of the ligand being important for binding. In contrast, the acetate portion of glycine betaine did not contribute to binding, as suggested by lack of changes in the Kis values upon substituting glycine betaine with inhibitors containing methyl, ethyl, allyl, and 2-amino-ethyl side chains. In agreement with the inhibition data, the specificity of the enzyme for the organic substrate (kcat/Km value) decreased when N,N-dimethylethanolamine, N-methylethanolamine, and the isosteric substrate 3,3-dimethyl-1-butanol were used as substrate instead of choline; a contribution of approximately 7 kcal mol(-1) toward substrate discrimination was estimated for the interaction of the trimethylammonium portion of the substrate with the active site of choline oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号