首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid‐sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons in male rats is biphasic, initially showing exuberant growth through 4 weeks of age followed by a retraction to mature lengths by 7 weeks of age. The initial growth is steroid dependent, attenuated by castration or aromatase inhibition, and supported by hormone replacement. Dendritic retraction is also steroid sensitive and can be prevented by testosterone treatment, but is unaffected by aromatase inhibition. Together, these results suggest a role for estrogens during the initial growth phase of SNB development. In this study, we tested whether ovarian hormones could support SNB somal and dendritic development. Motoneuron morphology was assessed in normal males and in females perinatally masculinized with dihydrotestosterone and then either ovariectomized or left intact. SNB motoneurons were retrogradely labeled with cholera toxin‐HRP at 4 or 7 weeks of age and reconstructed in three dimensions. Initial growth of SNB dendrites was reduced after ovariectomy in masculinized females. However, no differences in dendritic length were seen at 7 weeks of age between intact and ovariectomized masculinized females, and lengths in both groups were significantly lower than those of normal males. Together with previous findings, these results suggest that estrogens are involved in the early growth of SNB dendrites, but not in their subsequent retraction. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 301–314, 2001  相似文献   

2.
The pivotal role of agrin in inducing postsynaptic specializations at neuromuscular junctions has been well characterized. Increasing evidence suggests that agrin is also involved in neuronal development. In this study, we found that agrin inhibited neurite extension and, more importantly, a gradient of agrin induced repulsive growth-cone turning in cultured Xenopus spinal neurons. Incubation with a neutralizing antibody to agrin or expression of the extracellular domain of muscle-specific kinase, a component of the agrin receptor complex, abolished these effects of agrin. Agrin-induced repulsive growth-cone turning requires the activity of PI3-kinase and Ca2+ signaling. In addition, the expression of dominant-negative Rac1 inhibited neurite extension and blocked agrin-mediated growth-cone turning. Taken together, our findings suggest that agrin regulates neurite extension and provide evidence for an unanticipated role of agrin in growth-cone steering in developing neurons.  相似文献   

3.
Proton-activated currents were examined in patch-clamp recordings from embryonic chick motoneurons. Rapid application of protons evoked a large inward current that peaked and then decayed, presumably due to channel inactivation. A pH shift from 7.4 to 7.1 was sufficient to evoke detectable currents. The shift from pH 7.4 required for half-maximal current amplitude (EC50) was to pH 6.8. In single-channel recordings, activation was achieved within 6 ms at pH 7. The average channel open time was 1.4 ms; the closed-state time constants were 1.0 and 6.2 ms. At pH 6.5, the single-channel conductance was 22 pS, and the reversal potential was similar to the calculated Na+ equilibrium potential. Current amplitude declined by 49% following addition of Ni2+ and increased by 58% as Ca2+ was lowered from 2 to 0.1 mM. Inactivation time constants ranged from 90 to 200 ms as pH varied from 6 to 7; these values did not depend on membrane potential. The reactivation time constant was 22 s. Proton- and glutamate-activated currents summated. Thus, transient decreases in extracellular pH can evoke large inward currents that decay rapidly and reactivate slowly. These currents may occur under pathological conditions that affect extracellular pH.  相似文献   

4.
Dissociated neurons from the trigeminal (V) region of the metencephalic basal plate or the ventral spinal cord from chick embryos of Day 4 (V basal plate) or Day 5 (spinal cord) were cultured on a laminin substratum either in the presence of nerve growth factor (NGF) or in control medium. Assessment was made of neuronal survival, the amount of neurite elaborated, and the percentage of neurons initiating neurites. The presence of motoneurons was verified by retrograde labeling with the fluorescent dye diI. NGF was found to significantly increase the quantity of neuritic processes produced by the spinal cord dissociates at both 24 and 48 hr in vitro. The percentage of neurons initiating neuritic processes was significantly increased by NGF in the trigeminal population at 48 hr in vitro. Neuronal survival was not enhanced by NGF in either group. Both trigeminal and spinal cord neurons were also found to specifically bind 125I-NGF in culture. These results provide direct evidence for an influence of NGF on process formation of early embryonic motoneurons in culture.  相似文献   

5.
Amyotrophic lateral sclerosis is characterized by motoneuron degeneration, in which glutamate-induced cell death is thought to play a pathogenic role. This excitotoxic process is mediated by cytosolic Ca2+ overload. The glutamatergic ionotropic channel molecules, which constitute a major route of Ca2+ entry, were present on cultured spinal motoneurons. Using ratio RT-PCR, the relative presence in isolated motoneurons of the GluR subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor was evaluated. GluR1 and GluR2 mRNAs were present abundantly, while GluR3 and GluR4 mRNAs were much less abundant. The relative amount of mRNAs encoding the different protein isoforms responsible for Ca2+ uptake into the internal stores and for controlled release of Ca2+ from these stores was also determined. For the sarco/endoplasmic reticulum Ca2+ ATPases (SERCAs), only the SERCA2b class 4 splice variant was found. The inositol 1,4,5-trisphosphate receptor (IP3R) mRNAs were mainly transcribed from the IP3RI and IP3RII genes. Heterogeneity was also observed for the ryanodine receptors (RyR) as the RyR1, RyR2 and RyR3 mRNAs were present.  相似文献   

6.
Extracellular potentials from single spinal motoneurons   总被引:1,自引:8,他引:1       下载免费PDF全文
Extracellular action potentials found close to the surface of motoneurons are related to the intracellular spikes. Evidence is cited to support the assumption that the extracellular spikes have the same time course as the membrane current at the site of recording. Simultaneously recorded intracellular and extracellular spikes are compared. Intracellular spikes are transformed, by means of a circuit which is equivalent to the extracellular recording situation, into transients that are like those appearing extracellularly. Evidence is given that the recordings are from the cell bodies of motoneurons. The results show that the membrane at the extracellular recording site does not produce a spike since the time course of the extracellular potentials is determined by the passive properties of the membrane.  相似文献   

7.
The rat lumbar spinal cord contains the steroid-sensitive spinal nucleus of the bulbocavernosus (SNB), whose motoneurons innervate perineal muscles involved in copulatory reflexes. In normal males, SNB motoneuron dendrites grow exuberantly through postnatal (P) day 28. This growth is steroid dependent: Dendrites fail to grow in males castrated at P7, but grow normally in castrates treated with testosterone or its metabolites, dihydrotestosterone combined with estrogen. Treatment with either metabolite alone supports dendritic growth, but not to the level of testosterone-treated or intact males. In this study, we tested the hypothesis that aromatization of androgens to estrogens was involved in the masculine development of SNB dendrites. Motoneuron morphology was assessed in normal males and males treated daily (P7-28) with fadrozole, a potent aromatase inhibitor (0.25 mg/kg, subcutaneously) or saline vehicle (n = 4-6/group). SNB motoneurons were retrogradely labeled with cholera toxin-horseradish peroxidase at P28 (when dendritic length is normally maximal) and reconstructed in three dimensions. Comparable labeling was seen across groups; it was equivalent in both the rostrocaudal and radial extents. However, dendritic lengths in fadrozole-treated males were significantly below those of intact or saline-treated males. Neither SNB somata size nor target muscle weight differed across groups. These results suggest that aromatization of androgens to estrogens is necessary for development of masculine SNB dendritic morphology.  相似文献   

8.
9.
An analysis has been made of the electrical responses recorded on the surface and within the substance of the first sacral spinal segment when the contained motoneurons are excited by single and repeated antidromic ventral root volleys. A succession of negative deflections, designated in order of increasing latency m, i, b, d, has been found. Each of those deflections possesses some physiological property or properties to distinguish it from the remainder. Indicated by that fact is the conclusion that the successive deflections represent impulse conduction through successive parts of the motoneurons that differ in behavior, each from the others. Since the spinal cord constitutes a volume conductor the negative deflections are anteceded by a positive deflection at all points except that at which the axonal impulses first enter from the ventral root into the spinal cord. Frequently two or more negative deflections are recorded together in overlapping sequence, but for each deflection a region can be found in which the onset of that deflection marks the transition from prodromal positivity to negativity. Deflection m is characteristic of axonal spikes. Latent period is in keeping with known axonal conduction velocity. Refractory period is brief. The response represented by m is highly resistant to asphyxia. Maximal along the line of ventral root attachment and attenuating sharply therefrom, deflection m can be attributed only to axonal impulse conduction. Deflection i is encountered only within the cord, and is always associated with a deflection b. The i,b complex is recordable at loci immediately dorsal to regions from which m is recorded, and immediately ventral to points from which b is recorded in isolation from i. Except for its great sensitivity to asphyxia, deflection i has properties in common with those of m, but very different from those of b or d. To judge by properties i represents continuing axonal impulse conduction into a region, however, that is readily depolarized by asphyxia. Deflection b possesses a unique configuration in that the ascending limb is sloped progressively to the right indicating a sharp decrease in velocity of the antidromic impulses penetrating the b segment. A second antidromic volley will not conduct from i segment to b segment of the motoneurons unless separated from the first by nearly 1 msec. longer than is necessary for restimulation of axons. This value accords with somatic refractoriness determined by other means. Together with spatial considerations, the fact suggests that b represents antidromic invasion of cell bodies. Deflection d is ubiquitous, but in recordings from regions dorsal and lateral to the ventral horn, wherein an electrode is close to dendrites, but remote from other segments of motoneurons, d is the initial negative deflection. In latency d is variable to a degree that demands that it represent slow conduction through rather elongated structures. When associated with deflection b, deflection d may arise from the peak of b with the only notable discontinuity provided by the characteristically sloped rising phase of b. Deflection d records the occupation by antidromic impulses of the dendrites. Once dendrites have conducted a volley they will not again do so fully for some 120 msec. Embracing the several deflections, recorded impulse negativity in the motoneurons may endure for nearly 5 msec. When the axonal deflection m is recorded with minimal interference from somatic currents, it is followed by a reversal of sign to positivity that endures as long as impulse negativity can be traced elsewhere, demonstrating the existence of current flow from axons to somata as the latter are occupied by impulses. Note is taken of the fact that impulse conduction through motoneurons is followed by an interval, measurable to some 120 msec., during which after-currents flow. These currents denote the existence in parts of the intramedullary motoneurons of after-potentials the courses of which must differ in different parts of the neurons, otherwise nothing would be recorded. The location of sources and sinks is such as to indicate that a major fraction of the current flows between axons and somata. For approximately 45 msec. the direction of flow is from dendrites to axons. Thereafter, and for the remaining measurable duration, flow is from axons to dendrites.  相似文献   

10.
Within a historical perspective, different experimental approaches are reviewed that have used new tools and new concepts to gain an insight into the functional significance of the architecture of dendritic arborizations of nerve cells. A single type of neurons, the motoneurons, were taken as a case study to show how different fields, such as histology, morphology, electrophysiology, and neuronal modeling, have developed in parallel and accumulated a wealth of new data, and how consideration of these new informations led to new working hypotheses. Matching geometrical and electrical parameters of dendrites is critically analyzed as a basis for understanding of the dendritic functions.  相似文献   

11.
The purpose of this study was to develop a scheme for classifying turtle motoneurons, such that their properties could be compared to those of other vertebrate species, including, in particular, the cat. A 130-cell sample of turtle motoneurons was provisionally classified into four groups (1-4) on the basis of a cluster analysis of the cells' intracellularly recorded input resistance, rheobase, and slope of their stimulus current-spike frequency relation. These measurements, using sharp microelectrodes and an in vitro spinal cord slice preparation, were particularly robust. It is argued that the cat counterpart of our turtle type 1, 2, and 3 motoneurons innervate slow-twitch muscle fibers, fast-twitch-oxidative fibers, and fast-twitch-glycolytic fibers, respectively. Our turtle type 4 motoneuron is thought analogous to a particularly high-threshold cat and human cell that innervates highly fatigable fast-twitch muscle fibers in both species. Our turtle type 1 category may include cells that innervate non-twitch muscle fibers, which are found in other non-mammalian vertebrates. To advance comparative spinal cord neurobiology, the present results invite comparison to the motoneurons of other vertebrate species, which have yet to be subjected to similar or other classification procedures.  相似文献   

12.
Potentials of motoneurons of the lower segments of the spinal cord were recorded with the aid of intracellular microelectrodes in experiments on cats with induced tetanus produced by injection of tetanus toxin (1500–2000 mouse LD50) into the extensor muscles of the left shin. Neither afferent volleys of impulses in cutaneous and muscle nerves, nor antidromic volleys in the corresponding ventral roots, produced IPSPs in motoneurons of the extremity into which toxin was injected. The form both of antidromic peak potentials and of monosynaptic EPSPs in motoneurons in which IPSPs were blocked by tetanus toxin did not differ from the form of corresponding potentials of motoneurons in normal cats. The values of threshold depolarization for peak discharges during synaptic and direct stimulation were equal in tetanus and control motoneurons. Resistance and time constant values of the membrane in "tetanus" motoneurons did not differ from the corresponding values for "control" motoneurons.N. I. Pirogov Second Medical Institute, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 25–34, July–August, 1969.  相似文献   

13.
14.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motoneurons. Recently, vascular endothelial growth factor (VEGF) has been identified as a neurotrophic factor and has been implicated in the mechanisms of pathogenesis of ALS and other neurological diseases. The potential neuroprotective effects of VEGF in a rat spinal cord organotypic culture were studied in a model of chronic glutamate excitotoxicity in which glutamate transporters are inhibited by threohydroxyaspartate (THA). Particularly, we focused on the effects of VEGF in the survival and vulnerability to excitotoxicity of spinal cord motoneurons. VEGF receptor-2 was present on spinal cord neurons, including motoneurons. Chronic (3 weeks) treatment with THA induced a significant loss of motoneurons that was inhibited by co-exposure to VEGF (50 ng/mL). VEGF activated the phosphatidylinositol 3-kinase/Akt (PI3-K/Akt) signal transduction pathway in the spinal cord cultures, and the effect on motoneuron survival was fully reversed by the specific PI3-K inhibitor, LY294002. VEGF also prevented the down-regulation of Bcl-2 and survivin, two proteins implicated in anti-apoptotic and/or anti-excitotoxic effects, after THA exposure. Together, these findings indicate that VEGF has neuroprotective effects in rat spinal cord against chronic glutamate excitotoxicity by activating the PI3-K/Akt signal transduction pathway and also reinforce the hypothesis of the potential therapeutic effects of VEGF in the prevention of motoneuron degeneration in human ALS.  相似文献   

15.
In neurons, spike timing is determined by integration of synaptic potentials in delicate concert with intrinsic properties. Although the integration time is functionally crucial, it remains elusive during network activity. While mechanisms of rapid processing are well documented in sensory systems, agility in motor systems has received little attention. Here we analyze how intense synaptic activity affects integration time in spinal motoneurons during functional motor activity and report a 10-fold decrease. As a result, action potentials can only be predicted from the membrane potential within 10 ms of their occurrence and detected for less than 10 ms after their occurrence. Being shorter than the average inter-spike interval, the AHP has little effect on integration time and spike timing, which instead is entirely determined by fluctuations in membrane potential caused by the barrage of inhibitory and excitatory synaptic activity. By shortening the effective integration time, this intense synaptic input may serve to facilitate the generation of rapid changes in movements.  相似文献   

16.
Single channel patch-clamp recordings show that embryonic rat spinal motoneurons express anomalous L-type calcium channels, which reopen upon repolarization to resting potentials, displaying both short and long reopenings. The probability of reopening increases with increasing voltage of the preceding depolarization without any apparent correlation with inactivation during the depolarization. The probability of long with respect to short reopenings increases with increasing length of the depolarization, with little change in the total number of reopenings and in their delay. With less negative repolarization voltages, the delay increases, while the mean duration of both short and long reopenings decreases, remaining longer than that of the openings during the preceding depolarization. Open times decrease with increasing voltage in the range -60 to +40 mV. Closed times tend to increase at V > 20 mV. The open probability is low at all voltages and has an anomalous bell-shaped voltage dependence. We provide evidence that short and long reopenings of anomalous L-type channels correspond to two gating modes, whose relative probability depends on voltage. Positive voltages favor both the transition from a short-opening to a long-opening mode and the occupancy of a closed state outside the activation pathway within each mode from which the channel reopens upon repolarization. The voltage dependence of the probability of reopenings reflects the voltage dependence of the occupancy of these closed states, while the relative probability of long with respect to short reopenings reflects the voltage dependence of the equilibrium between modes. The anomalous gating persists after patch excision, and therefore our data rule out voltage-dependent block by diffusible ions as the basis for the anomalous gating and imply that a diffusible cytosolic factor is not necessary for voltage-dependent potentiation of anomalous L-type channels.  相似文献   

17.
Enrichment of spinal cord cell cultures with motoneurons   总被引:9,自引:2,他引:7  
Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221-283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation.  相似文献   

18.
Effects of 5-hydroxytryptamine on cat spinal motoneurons   总被引:2,自引:0,他引:2  
The effects of 5-hydroxytryptamine (5-HT) on spinal motoneurons were examined in pentobarbital-anaesthetized cats and in nonanaesthetized decerebrate cats by intracellular recording and extracellular iontophoresis of 5-HT. 5-HT first induced a depolarization and then a long-lasting hyperpolarization (up to 60 min) with unchanged input resistance. The slow hyperpolarization was prevented by the 5-HT antagonists ketanserin (5-HT2), methysergide, and spiperone (5-HT1,2) and mimicked by the agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (5-HT2). The post-spike after hyperpolarization was enhanced after application of 5-HT. A depolarization was induce by the 5-HT agonists (+/-)-8-hydroxy-(2)-(di-n-propylamino)tetralin (5-HT1A) and 1-(2-methoxyphenyl)piperazine (5-HT1). Possible mechanisms for the 5-HT-induced hyperpolarization and its intracellular medication are discussed. The present data suggest multiple effects of 5-HT on cat spinal motoneurons.  相似文献   

19.
Spinal muscular atrophy (SMA), a common autosomal recessive form of motoneuron disease in infants and young adults, is caused by mutations in the survival motoneuron 1 (SMN1) gene. The corresponding gene product is part of a multiprotein complex involved in the assembly of spliceosomal small nuclear ribonucleoprotein complexes. It is still not understood why reduced levels of the ubiquitously expressed SMN protein specifically cause motoneuron degeneration. Here, we show that motoneurons isolated from an SMA mouse model exhibit normal survival, but reduced axon growth. Overexpression of Smn or its binding partner, heterogeneous nuclear ribonucleoprotein (hnRNP) R, promotes neurite growth in differentiating PC12 cells. Reduced axon growth in Smn-deficient motoneurons correlates with reduced beta-actin protein and mRNA staining in distal axons and growth cones. We also show that hnRNP R associates with the 3' UTR of beta-actin mRNA. Together, these data suggest that a complex of Smn with its binding partner hnRNP R interacts with beta-actin mRNA and translocates to axons and growth cones of motoneurons.  相似文献   

20.
A study was made of changes in the amplitude of H-reflexes in m. gastrocnemius and the intensity of Ia inhibition in healthy subjects versus patients with midthoracic injury to the spinal cord before, during, and after voluntary tensing of the masticatory, cervical, and finger muscles. Tensing these muscles brought about facilitation of H-reflex and reduced intensity of Ia response in healthy subjects and patients with paraparesis but produced the opposite effect on paraplegics (or had no influence on reactions). This leads to a discussion of the relationship between the changes observed in reflex reactions and posttrauma damage to structure and function of the spinal cord.A. A. Bogomolets Institute, of Physiology, Academy of Sciences of the Ukrainian SSR. Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 105–113, January–February, 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号