首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》2006,1757(5-6):624-630
The abundance of mitochondria is regulated by biogenesis and division. These processes are controlled by cellular factors, given that, for example, mitochondria have to replicate their DNA prior to cell division. However, the mechanisms that allow a synchronization of cell proliferation with mitochondrial genome replication are still obscure. We report here our investigations on the role of proliferation and the contribution of Ras and p66Shc in the regulation of mitochondrial DNA copy number. Ras proteins mediate a variety of receptor-transduced mitogenic signals and appear to play an essential role in the cellular response to growth factors. P66Shc is a genetic determinant of life span in mammals and has been implicated in the regulation of receptor signaling and various mitochondrial functions. First, we confirmed previous reports showing that mitochondrial DNA is replicated during a specific phase of the cell cycle (the pre-S phase) and provided novel evidences that this process is regulated by mitogenic growth factors. Second, we showed that mitochondrial DNA replication is activated following Ras-induced cellular hyper-proliferation. Finally, we showed that p66Shc expression induces mitochondrial DNA replication, both in vitro and in vivo. We suggest that mitochondria are target of intracellular signaling pathways leading to proliferation, involving Ras and p66Shc, which might function to integrate cellular bio-energetic requirements and the inheritance of mitochondrial DNA in a cell cycle-dependent manner.  相似文献   

2.
The abundance of mitochondria is regulated by biogenesis and division. These processes are controlled by cellular factors, given that, for example, mitochondria have to replicate their DNA prior to cell division. However, the mechanisms that allow a synchronization of cell proliferation with mitochondrial genome replication are still obscure. We report here our investigations on the role of proliferation and the contribution of Ras and p66Shc in the regulation of mitochondrial DNA copy number. Ras proteins mediate a variety of receptor-transduced mitogenic signals and appear to play an essential role in the cellular response to growth factors. P66Shc is a genetic determinant of life span in mammals and has been implicated in the regulation of receptor signaling and various mitochondrial functions. First, we confirmed previous reports showing that mitochondrial DNA is replicated during a specific phase of the cell cycle (the pre-S phase) and provided novel evidences that this process is regulated by mitogenic growth factors. Second, we showed that mitochondrial DNA replication is activated following Ras-induced cellular hyper-proliferation. Finally, we showed that p66Shc expression induces mitochondrial DNA replication, both in vitro and in vivo. We suggest that mitochondria are target of intracellular signaling pathways leading to proliferation, involving Ras and p66Shc, which might function to integrate cellular bio-energetic requirements and the inheritance of mitochondrial DNA in a cell cycle-dependent manner.  相似文献   

3.
Conventional paradigm ascribes the cell proliferative function of the human oncoprotein mouse double minute2 (MDM2) primarily to its ability to degrade p53. Here we report that in the absence of p53, MDM2 induces replication stress eliciting an early S-phase checkpoint response to inhibit further firing of DNA replication origins. Partially synchronized lung cells cultured from p53−/−:MDM2 transgenic mice enter S phase and induce S-phase checkpoint response earlier than lung cells from p53−/− mice and inhibit firing of DNA replication origins. MDM2 activates chk1 phosphorylation, elevates mixed lineage lymphoma histone methyl transferase levels and promotes checkpoint-dependent tri-methylation of histone H3 at lysine 4, known to prevent firing of late replication origins at the early S phase. In the absence of p53, a condition that disables inhibition of cyclin A expression by MDM2, MDM2 increases expression of cyclin D2 and A and hastens S-phase entry of cells. Consistently, inhibition of cyclin-dependent kinases, known to activate DNA replication origins during firing, inhibits MDM2-mediated induction of chk1 phosphorylation indicating the requirement of this activity in MDM2-mediated chk1 phosphorylation. Our data reveal a novel pathway, defended by the intra-S-phase checkpoint, by which MDM2 induces unscheduled origin firing and accelerates S-phase entry of cells in the absence of p53.  相似文献   

4.
5.
The initiation of DNA replication and the subsequent chain elongation were studied using Chinese hamster ovary cells synchronized at the beginning of S phase. The cells were synchronized by a combination of mitotic selection and treatment with 5-fluorodeoxyuridine (FdU). The use of this drug at a concentration of 10–5 M was found to effectively prevent the leakage of cells into S phase. Reversal of the FdU block by supplying thymidine resulted in the synchronous onset of initiation at multiple sites in each cell. The length of the nascent chains, as determined by autoradiography and velocity sedimentation in alkaline gradients, increased linearly with time during the first twenty minutes of S phase after release. — We applied these procedures to study the effects of the length of an FdU block on the number of functional origins per cell, the rate of chain growth, and the rate of DNA synthesis per cell following reversal of the block. Although no change was noted in the rate of DNA synthesis in cells held at the beginning of S phase from 10.5 to 24 h after division, the rate of chain growth decreased from 0.94 to 0.28 microns per min. This decrease indicated that the number of functional origins increased markedly with length of FdU block. The calculated number of utilized origins per cell increased from 1,900 to 5,700. We also presented arguments that 1,900 origins per cell represents the approximate number of origins utilized by any cell held at the beginning of S phase for less than 10.5 h after division.  相似文献   

6.
The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4Cdt2) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.  相似文献   

7.
The ribosomal DNA (rDNA) genes of Saccharomyces cerevisiae are located in a tandem array of about 150 repeats. Using a diploid with markers flanking and within the rDNA array, we showed that low levels of DNA polymerase alpha elevate recombination between both homologues and sister chromatids, about five-fold in mitotic cells and 30-fold in meiotic cells. This stimulation is independent of Fob1p, a protein required for the programmed replication fork block (RFB) in the rDNA. We observed that the fob1 mutation alone significantly increased meiotic, but not mitotic, rDNA recombination, suggesting a meiosis-specific role for this protein. We found that meiotic cells with low polymerase alpha had decreased Sir2p binding and increased Spo11p-catalyzed double-strand DNA breaks in the rDNA. Furthermore, meiotic crossover interference in the rDNA is absent. These results suggest that the hyper-Rec phenotypes resulting from low levels of DNA polymerase alpha in mitosis and meiosis reflect two fundamentally different mechanisms: the increased mitotic recombination is likely due to increased double-strand DNA breaks (DSBs) resulting from Fob1p-independent stalled replication forks, whereas the hyper-Rec meiotic phenotype results from increased levels of Spo11-catalyzed DSBs in the rDNA.  相似文献   

8.
Kim JM  Yamada M  Masai H 《Mutation research》2003,532(1-2):29-40
Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development.  相似文献   

9.
Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome.  相似文献   

10.
During G1 phase, a prereplicative complex (pre-RC) that determines where DNA synthesis initiates forms at origins. The Sir2p histone deacetylase inhibits pre-RC assembly at a subset of origins, suggesting that Sir2p inhibits DNA replication through a unique aspect of origin structure. Here, we identified five SIR2-sensitive origins on chromosomes III and VI. Linker scan analysis of two origins indicated that they share a common organization, including an inhibitory sequence positioned 3' to the sites of origin recognition complex (ORC) binding and pre-RC assembly. This inhibitory sequence (I(S)) required SIR2 for its activity, suggesting that SIR2 inhibits origins through this sequence. Furthermore, I(S) elements occurred within positioned nucleosomes, and Abf1p-mediated exclusion of nucleosomes from the origin abrogated the inhibition. These data suggest that Sir2p and I(S) elements inhibit origin activity by promoting an unfavorable chromatin structure for pre-RC assembly.  相似文献   

11.
Noc3p (Nucleolar Complex-associated protein) is an essential protein in budding yeast DNA replication licensing. Noc3p mediates the loading of Cdc6p and MCM proteins onto replication origins during the M-to-G1 transition by interacting with ORC (Origin Recognition Complex) and MCM (Minichromosome Maintenance) proteins. FAD24 (Factor for Adipocyte Differentiation, clone number 24), the human homolog of Noc3p (hNOC3), was previously reported to play roles in the regulation of DNA replication and proliferation in human cells. However, the role of hNOC3 in replication licensing was unclear. Here we report that hNOC3 physically interacts with multiple human pre-replicative complex (pre-RC) proteins and associates with known replication origins throughout the cell cycle. Moreover, knockdown of hNOC3 in HeLa cells abrogates the chromatin association of other pre-RC proteins including hCDC6 and hMCM, leading to DNA replication defects and eventual apoptosis in an abortive S-phase. In comparison, specific inhibition of the ribosome biogenesis pathway by preventing pre-rRNA synthesis, does not lead to any cell cycle or DNA replication defect or apoptosis in the same timeframe as the hNOC3 knockdown experiments. Our findings strongly suggest that hNOC3 plays an essential role in pre-RC formation and the initiation of DNA replication independent of its potential role in ribosome biogenesis in human cells.  相似文献   

12.
Negative control of p53 by Sir2alpha promotes cell survival under stress.   总被引:50,自引:0,他引:50  
J Luo  A Y Nikolaev  S Imai  D Chen  F Su  A Shiloh  L Guarente  W Gu 《Cell》2001,107(2):137-148
The NAD-dependent histone deacetylation of Sir2 connects cellular metabolism with gene silencing as well as aging in yeast. Here, we show that mammalian Sir2alpha physically interacts with p53 and attenuates p53-mediated functions. Nicotinamide (Vitamin B3) inhibits an NAD-dependent p53 deacetylation induced by Sir2alpha, and also enhances the p53 acetylation levels in vivo. Furthermore, Sir2alpha represses p53-dependent apoptosis in response to DNA damage and oxidative stress, whereas expression of a Sir2alpha point mutant increases the sensitivity of cells in the stress response. Thus, our findings implicate a p53 regulatory pathway mediated by mammalian Sir2alpha. These results have significant implications regarding an important role for Sir2alpha in modulating the sensitivity of cells in p53-dependent apoptotic response and the possible effect in cancer therapy.  相似文献   

13.
The oncogenic property of the adenovirus (Ad) transforming E1A protein is linked to its capacity to induce cellular DNA synthesis which occurs as a result of its interaction with several host proteins, including pRb and p300/CBP. While the proteins that contribute to the forced induction of cellular DNA synthesis have been intensively studied, the nature of the cellular DNA replication that is induced by E1A in quiescent cells is not well understood. Here we show that E1A expression in quiescent cells leads to massive cellular DNA rereplication in late S phase. Using a single-molecule DNA fiber assay, we studied the cellular DNA replication dynamics in E1A-expressing cells. Our studies show that the DNA replication pattern is dramatically altered in E1A-expressing cells, with increased replicon length, fork velocity, and interorigin distance. The interorigin distance increased by about 3-fold, suggesting that fewer DNA replication origins are used in E1A-expressing cells. These aberrant replication events led to replication stress, as evidenced by the activation of the DNA damage response. In earlier studies, we showed that E1A induces c-Myc as a result of E1A binding to p300. Using an antisense c-Myc to block c-Myc expression, our results indicate that induction of c-Myc in E1A-expressing cells contributes to the induction of host DNA replication. Together, our results suggest that the E1A oncogene-induced cellular DNA replication stress is due to dramatically altered cellular replication events and that E1A-induced c-Myc may contribute to these events.  相似文献   

14.
Schizosaccharomyces pombe Pfh1p is an essential member of the Pif family of 5′-3′ DNA helicases. The two Saccharomyces cerevisiae homologs, Pif1p and Rrm3p, function in nuclear DNA replication, telomere length regulation, and mitochondrial genome integrity. We demonstrate here the existence of multiple Pfh1p isoforms that localized to either nuclei or mitochondria. The catalytic activity of Pfh1p was essential in both cellular compartments. The absence of nuclear Pfh1p resulted in G2 arrest and accumulation of DNA damage foci, a finding suggestive of an essential role in DNA replication. Exogenous DNA damage resulted in localization of Pfh1p to DNA damage foci, suggesting that nuclear Pfh1p also functions in DNA repair. The absence of mitochondrial Pfh1p caused rapid depletion of mitochondrial DNA. Despite localization to nuclei and mitochondria in S. pombe, neither of the S. cerevisiae homologs, nor human PIF1, suppressed the lethality of pfh1Δ cells. However, the essential nuclear function of Pfh1p could be supplied by Rrm3p. Expression of Rrm3p suppressed the accumulation of DNA damage foci but not the hydroxyurea sensitivity of cells depleted of nuclear Pfh1p. Together, these data demonstrate that Pfh1p has essential roles in the replication of both nuclear and mitochondrial DNA.  相似文献   

15.
16.
The HMR-E silencer is a DNA element that directs the formation of silent chromatin at the HMRa locus in Saccharomyces cerevisiae. Sir1p is one of four Sir proteins required for silent chromatin formation at HMRa. Sir1p functions by binding the origin recognition complex (ORC), which binds to HMR-E, and recruiting the other Sir proteins (Sir2p to -4p). ORCs also bind to hundreds of nonsilencer positions distributed throughout the genome, marking them as replication origins, the sites for replication initiation. HMR-E also acts as a replication origin, but compared to many origins in the genome, it fires extremely inefficiently and late during S phase. One postulate to explain this observation is that ORC's role in origin firing is incompatible with its role in binding Sir1p and/or the formation of silent chromatin. Here we examined a mutant HMR-E silencer and fusions between robust replication origins and HMR-E for HMRa silencing, origin firing, and replication timing. Origin firing within HMRa and from the HMR-E silencer itself could be significantly enhanced, and the timing of HMRa replication during an otherwise normal S phase advanced, without a substantial reduction in SIR1-dependent silencing. However, although the robust origin/silencer fusions silenced HMRa quite well, they were measurably less effective than a comparable silencer containing HMR-E's native ORC binding site.  相似文献   

17.
Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.  相似文献   

18.
ppGpp serves as an alarmon in prokaryotes, distributing and coordinating different cellular processes according to the nutritional potential of the growth medium. This work is interpreted as favoring the view that, in addition to its previously documented role in regulating the rate of ribosome synthesis [4], ppGpp participates in coordinating DNA replication and cell division. We studied the effects of ppGpp on the cell division cycle, using cells containing plasmid pSM11 that codes for the 55-kDa truncated RelA protein under the inducible Ptac promoter. In this system it was found that the rate of initiation of new rounds of DNA replication is inversely correlated with the intracellular level of ppGpp. Furthermore, ppGpp levels similar to those found during the activation of stringent control inhibited replication initiation, in a manner comparable to that resulting from inhibition of protein synthesis by amino acid starvation or by chloramphenicol addition. However, in contrast to chloramphenicol treatment, elevated ppGpp levels did not block septum formation, and, in fact, there is some evidence for enhanced septation. As a result, the residual cell division following elevation in ppGpp levels was higher than after chloramphenicol treatment, resulting in cells with a size similar to that of stationary phase cells.  相似文献   

19.
Mitochondrial DNA replication was examined in mutants for seven different Saccharomyces cerevisiae genes which are essential for nuclear DNA replication. In cdc8 and cdc21, mutants defective in continued replication during the S phase of the cell cycle, mitochondrial DNA replication ceases at the nonpermissive temperature. Replication is temperature sensitive even when these mutants are arrested in the G1 phase of the cell cycle with α factor, a condition where mitochondrial DNA replication continues for the equivalent of several generations at the permissive temperature. Therefore the cessation of replication results from a defect in mitochondrial replication per se, rather than from an indirect consequence of cells being blocked in a phase of the cell cycle where mitochondrial DNA is not normally synthesized. Since the temperature-sensitive mutations are recessive, the products of genes cdc8 and cdc21 must be required for both nuclear and mitochondrial DNA replication. In contrast to cdc8 and cdc21, mitochondrial DNA replication continues for a long time at the nonpermissive temperature in five other cell division cycle mutants in which nuclear DNA synthesis ceases within one cell cycle: cdc4, cdc7, and cdc28, which are defective in the initiation of nuclear DNA synthesis, and cdc14 and cdc23, which are defective in nuclear division. The products of these genes, therefore, are apparently not required for the initiation of mitochondrial DNA replication.  相似文献   

20.
Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号