首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leptin has a modulator effect on glucose-stimulated insulin secretion. To define the influences of different glucose (4, 8, 12, and 16 mmol/L) and leptin (5, 10, 15, and 20 nmol/L) concentrations on total insulin release in ex vivo pancreatic preparations, a customized perfusion technique was used. Such a profile of concentration brought about an index for the combined effect of leptin and glucose on the production of insulin. Insulin output was measured by radioimmunoassay. Stimulated by glucose alone in the control group, insulin secretion confirmed a bi-phasic pattern. Addition of leptin in the experimental group suppressed insulin secretion compared with control. A U-shape pattern of suppression was observed when the leptin and stimulatory glucose concentrations were combined. At 12 mmol/L glucose, leptin showed maximal insulin suppression. Leptin's effect on insulin was glucose dependent and showed a reproducible U-shaped pattern of suppression, which implicated possible direct dose-dependent interaction between leptin and glucose on insulin secretion.  相似文献   

2.
Leptin is an adipocyte-derived hormone participating in the regulation of food intake and energy balance. Its secretion from fat cells is potentiated by insulin and by substrates providing ATP, whereas factors increasing cAMP level attenuate hormone release stimulated by insulin and glucose. The present experiments were aimed to determine the effect of cAMP on leptin secretion stimulated by glucose, alanine or leucine in the presence of insulin. Moreover, the effect of protein kinase A inhibition on leptin secretion was tested. To stimulate leptin secretion, isolated rat adipocytes were incubated for 2 h in the buffer containing 5 mmol/l glucose, 10 mmol/l alanine or 10 mmol/l leucine, all in the presence of 10 nmol/l insulin. Inhibition of protein kinase A (PKA) by H-89 (50 micromol/l) slightly enhanced leptin release stimulated by glucose and leucine but not by alanine. Activation of this enzyme by dibutyryl-cAMP (1 mmol/l) substantially restricted leptin secretion stimulated by glucose, alanine and leucine. The inhibitory influence of dibutyryl-cAMP on leptin secretion was totally (in the case of stimulation induced by glucose) or partially (in the case of stimulation by alanine and leucine) suppressed by H-89. These results demonstrate that leptin secretion induced by glucose, alanine and leucine is profoundly attenuated by cAMP in PKA-dependent manner. Therefore, the action of different stimulators of leptin secretion may be restricted by agents increasing the cAMP content in adipocytes. Moreover, it has also been shown that inhibition of PKA evokes the opposite effect and enhances leptin release.  相似文献   

3.
4.
Role of leptin in the control of postprandial pancreatic enzyme secretion.   总被引:3,自引:0,他引:3  
Leptin released by adipocytes has been implicated in the control of food intake but recent detection of specific leptin receptors in the pancreas suggests that this peptide may also play some role in the modulation of pancreatic function. This study was undertaken to examine the effect of exogenous leptin on pancreatic enzyme secretion in vitro using isolated pancreatic acini, or in vivo in conscious rats with chronic pancreatic fistulae. Leptin plasma level was measured by radioimmunoassay following leptin administration to the animals. Intraperitoneal (i.p.) administration of leptin (0.1, 1, 5, 10, 20 or 50 microg/kg), failed to affect significantly basal secretion of pancreatic protein, but markedly reduced that stimulated by feeding. The strongest inhibition has been observed at dose of 10 microg/kg of leptin. Under basal conditions plasma leptin level averaged about 0.15 +/- 0.04 ng/ml and was increased by feeding up to 1.8 +/- 0.4 ng/ml. Administration of leptin dose-dependently augmented this plasma leptin level, reaching about 0.65 +/- 0.04 ng/ml at dose of 10 microg/kg of leptin. This dose of leptin completely abolished increase of pancreatic protein output produced by ordinary feeding, sham feeding or by diversion of pancreatic juice to the exterior. Leptin (10(-10)-10(-7) M) also dose-dependently attenuated caerulein-induced amylase release from isolated pancreatic acini, whereas basal enzyme secretion was unaffected. We conclude that leptin could take a part in the inhibition of postprandial pancreatic secretion and this effect could be related, at least in part, to the direct action of this peptide on pancreatic acini.  相似文献   

5.
Leptin, a hormone produced in adipocytes, is a key signal in the regulation of food intake and energy expenditure. Several studies have suggested that leptin can be regulated by macronutrients intake. Arachidonic acid is a dietary fatty acid known to affect cell metabolism. Controversial effects of this fatty acid on leptin have been reported. The aim of this experimental trial was to evaluate the effect of the arachidonic acid on basal and insulin-stimulated leptin secretion and expression in isolated rat adipocytes. Because insulin-stimulated glucose metabolism is an important regulator of leptin expression and secretion by the adipocytes, the effects of the arachidonic acid on indices of adipocyte metabolism were also examined. Isolated adipocytes were incubated with arachidonic acid (1-200 microM) in the absence and presence of insulin (1.6 nM). Leptin secretion and expression, glucose utilization and lactate production were determined at 96 h. The arachidonic acid (200 microM) inhibited both the basal and insulin stimulated leptin secretion and expression. Glucose utilization was not affected by the acid. Basal lactate production was increased by the fatty acid at the highest concentration used (200 microM), however lactate production in presence of insulin was not modified. Finally, the percentage of glucose carbon released as lactate was significantly increased (200 microM). These results suggest that the inhibitory effect of the arachidonic acid on leptin secretion and expression may be due, al least in part, to the increase in the anaerobic utilization of glucose.  相似文献   

6.
7.
Leptin originally described as product of the ob gene has been shown to be expressed in various tissues including the gastrointestinal tract. In this study, we investigated the influence of leptin on the secretion of pancreatic juice in biliary-pancreatic duct cannulated anaesthetised rats and in dispersed rat pancreatic acini in vitro. Exogenous leptin was given in boluses intravenously with or without CCK-8 (12 pmol kg(-1) body weight) in the presence or absence pharmacological CCK(1) receptor blockade, cervical vagotomy, and capsaicin pre-treatment. Administration of leptin (0.1, 1 and 10 microg kg(-1) body weight) did not affect the volume of bile and pancreatic juice while the protein and trypsin outputs were reduced in a dose-dependent manner. In the rats, leptin inhibited CCK-8 stimulated protein and trypsin outputs stronger than the basal pancreatic secretion. The inhibition by leptin was abolished by the pharmacological CCK(1) receptor blockade, cervical vagotomy, and capsaicin pre-treatment. In contrast, leptin did not affect basal and CCK-8-stimulated amylase release from the dispersed rat pancreatic acini in vitro. In conclusion, the results of the present study suggest that leptin does not act directly on the rat pancreatic acinar cells but inhibits the secretion of pancreatic enzymes acting indirectly via a neurohormonal CCK-vagal-dependent mechanism.  相似文献   

8.
The isoflavones--genistein and daidzein -- compounds found in high concentrations in soy play an important role in prevention of many diseases and affect some metabolic pathways. In the performed experiment it was demonstrated that genistein (5mg/kg b.w.) administered intragastrically for three days to male Wistar rats substantially diminished blood leptin level. Studies with isolated rat adipocytes revealed that this phytoestrogen strongly restricted leptin secretion from these cells. These effects were not accompanied by any changes in leptin gene expression in adipocytes. Daidzein-- an analogue of genistein -- used at similar concentrations did not affect blood leptin concentration, leptin secretion and expression of its gene. To determine the influence of genistein and daidzein on leptin release, adipocytes isolated from the epididymal fat tissue were incubated for 2h in Krebs--Ringer buffer. Leptin secretion stimulated by glucose with insulin was significantly diminished by genistein (0.25--1mM). This effect of genistein may arise from several aspects of its action in adipocytes documented in the literature such as the inhibition of glucose transport and metabolism, the attenuation of insulin signalling, the inhibition of cAMP phosphodiesterase and the stimulation of lipolysis. However, the bypassing of the restrictive action of genistein on glucose transport and glycolysis (by the use of alanine instead of glucose) and on insulin action (by the use of nicotinic acid) was not sufficient to restore leptin secretion from isolated adipocytes. It was also demonstrated that the restriction of the stimulatory influence of genistein on cAMP/protein kinase A (PKA) pathway (by the inhibition of PKA activity) did not improve leptin release. Results obtained in our experiments point at the restriction of glucose metabolism following formation of pyruvate as the pivotal reason of the inhibitory action of genistein on leptin release.  相似文献   

9.
In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg. kg(-1). day(-1) sc), or food restriction (HF-FR) for 12-15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic beta-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.  相似文献   

10.
We examined the effect of leptin on the insulin resistance in skeletal muscles by measuring glucose transport. Male Wistar rats were fed rat chow or high-fat diets for 30 days. Before sacrifice, rats fed high-fat diet were subcutaneously injected with leptin (1 mg/kg b.w.) for 3 days. The glucose transport in epitrochlearis and soleus muscles did not differ in the experimental groups under basal conditions, however these values decreased significantly in the rats fed high-fat diet under insulin stimulation (p<0.01). Leptin treatment recovered the decreased glucose transport in epitrochlearis (p<0.05) and soleus muscles (p=0.08). Triglyceride concentrations in soleus muscles were increased significantly in the rats fed high-fat diet as compared to rats fed chow diet (p<0.01), and were decreased significantly by leptin treatment (p<0.01). The glucose transport was measured under basal conditions and after 60 microU/ml of insulin treatment with or without 50 ng/ml of leptin. Leptin had no direct stimulatory effect on glucose transport under both basal and insulin-stimulated conditions in vitro. These results demonstrate that leptin injection to rats fed high-fat diet recovered impaired insulin responsiveness of skeletal muscles and muscle triglyceride concentrations. However, there was no direct stimulatory effect of leptin on insulin sensitivity of skeletal muscles in vitro.  相似文献   

11.
This study examined the pattern of distribution of vasoactive intestinal polypeptide (VIP), neuropeptide-Y (NPY) and substance P (SP) in the pancreas of diabetic rat to determine whether there are changes in the number and pattern of distribution of these neuropeptides after the onset of diabetes. Moreover, the effect of VIP, NPY and SP on insulin secretion from the pancreas of normal and diabetic rats was also examined. Diabetes mellitus (DM) was induced by a single dose of streptozotocin (STZ) given intraperitoneally (i.p.) (60 mg kg body weight(-1)). Four weeks after the induction of DM, diabetic (n = 6) and normal (n = 6) rats were anesthetized with chloral hydrate and their pancreases removed and processed for immunohistochemistry and insulin secretion. The number of insulin-positive cells in the islets of Langerhans was reduced while that of VIP and NPY increased significantly after the onset of diabetes. The pattern of distribution of VIP, NPY and SP in the nerves innervating the pancreas was similar in both normal and diabetic rats. VIP-evoked large and significant (P < 0.02) increases in insulin secretion from the pancreas of normal and diabetic rats. NPY also induced a marked (P < 0.005) increase in insulin release from pancreatic tissue fragments of normal rat. Stimulation of pancreatic tissue fragments of diabetic rat with NPY resulted in a slight but not significant increase in insulin release. SP induced a large and significant (P < 0.005) increase in insulin secretion from the pancreas of normal rat but inhibited insulin secretion significantly (P < 0.03) from isolated pancreas of diabetic rat. In summary, VIP and NPY can stimulate insulin secretion from the pancreas after the onset of diabetes. The stimulatory effect of SP on insulin secretion is reversed to inhibitory in diabetic rats.  相似文献   

12.
Leptin is an adipocyte-derived hormone that primarily acts in the hypothalamus and plays a key role in the regulation of food intake, body weight, energy expenditure and neuroendocrine function. Leptin has direct peripheral effects on several tissues, and it may be independently involved in insulin secretion and action besides its effects on body weight regulation. Basal plasma leptin and insulin concentrations correlate with each other. Insulin and glucose appear to increase leptin secretion. In turn, leptin increases peripheral insulin sensitivity while decreasing insulin secretion from pancreatic beta cells. Leptin increases skeletal muscle glucose uptake and oxidation, and suppresses hepatic glucose output. Effects of leptin on lipid metabolism might reduce lipotoxicity and therefore contribute to the improvement of hepatic, skeletal and whole body insulin sensitivity. Leptin is the first adipokine used in the treatment of hypoleptinemic clinical disorders. Although leptin therapy has limited success in common obesity, it has impressive effects in congenital leptin deficiency, lipoatrophic diabetes and syndromes of severe insulin resistance. Leptin has been reported to ameliorate hyperinsulinemia and diabetes in the clinical setting of congenital leptin deficiency. It also improves hyperglycemia, insulin resistance, hyperinsulinemia, dyslipidemia and hepatic steatosis in lipoatrophic diabetes. These promising results warrant clinical trials to test the hypothesis that leptin alone or with classical antidiabetic agents may potentially be beneficial in the treatment of hypoleptinemic non-obese individuals with glucose intolerance and diabetes. This review summarizes the clinical applications of leptin, particularly emphasizing the effects of leptin on glucose homeostasis.  相似文献   

13.
The effect of infused acetylcholine and (2-acetyllactoyloxyethyl)-trimethylammonium hemi-1,5-naphthalenedisulfonate (aclatonium napadisilate), a new cholinergic drug . On endocrine and exocrine secretory responses was simultaneously investigated during the perfusion of isolated rat pancreases. Acetylcholine (1.1 microM) stimulated the output of pancreatic juice and amylase, and significantly elicited the production of both insulin and glucagon. Its effect on somatostatin secretion, however, was minimal. Both pancreatic juice flow and amylase output were also significantly stimulated by aclatonium napadisilate (12 microM). These stimulatory effects of aclatonium napadisilate on the exocrine pancreas were blocked by atropine (25 microM). Aclatonium napadisilate could stimulate glucagon, but could not influence insulin and somatostatin secretion. The addition of atropine had no effect on the release of insulin, glucagon, and somatostatin. These results indicate that the effects of aclatonium napadisilate is cholinergic, and that the action is muscarinic. In addition, it can be concluded that pancreatic somatostatin secretion, as well as other hormones from islet cells, is controlled by the parasympathetic nervous system.  相似文献   

14.
15.
Pancreastatin is a novel peptide, isolated from porcine pancreatic extracts, which has been shown to inhibit glucose-induced insulin release "in vitro". To achieve further insight into the influence of pancreastatin on pancreatic hormone secretion, we have studied the effects of this peptide on unstimulated insulin, glucagon and somatostatin output, as well as on the responses of these hormones to glucose and to tolbutamide in the perfused rat pancreas. Pancreastatin strongly inhibited unstimulated insulin release as well as the insulin responses to glucose and to tolbutamide. It did not significantly affect glucagon or somatostatin output under any of the above-mentioned conditions. These findings suggest that pancreastatin inhibits B-cell secretory activity directly, and not through an A-cell or D-cell paracrine effect.  相似文献   

16.
17.
Galanin is a neurotransmitter peptide that suppresses insulin secretion. The present study aimed at investigating how a non-peptide galanin receptor agonist, galnon, affects insulin secretion from isolated pancreatic islets of healthy Wistar and diabetic Goto-Kakizaki (GK) rats. Galnon stimulated insulin release potently in isolated Wistar rat islets; 100 microM of the compound increased the release 8.5 times (p<0.001) at 3.3 mM and 3.7 times (p<0.001) at 16.7 mM glucose. Also in islet perifusions, galnon augmented several-fold both acute and late phases of insulin response to glucose. Furthermore, galnon stimulated insulin release in GK rat islets. These effects were not inhibited by the presence of galanin or the galanin receptor antagonist M35. The stimulatory effects of galnon were partly inhibited by the PKA and PKC inhibitors, H-89 and calphostin C, respectively, at 16.7 but not 3.3 mM glucose. In both Wistar and GK rat islets, insulin release was stimulated by depolarization of 30 mM KCl, and 100 microM galnon further enhanced insulin release 1.5-2 times (p<0.05). Cytosolic calcium levels, determined by fura-2, were increased in parallel with insulin release, and the L-type Ca2+-channel blocker nimodipine suppressed insulin response to glucose and galnon. In conclusion, galnon stimulates insulin release in islets of healthy rats and diabetic GK rats. The mechanism of this stimulatory effect does not involve galanin receptors. Galnon-induced insulin release is not glucose-dependent and appears to involve opening of L-type Ca2+-channels, but the main effect of galnon seems to be exerted at a step distal to these channels, i.e., at B-cell exocytosis.  相似文献   

18.
Amylin, a 37-amino acid polypeptide, is the main component of amyloid deposits in the islets of Langerhans, and has been identified in the B-cell secretory granules. We have investigated the effect of rat amylin on the insulin and glucagon release by the isolated, perfused rat pancreas. Amylin infusion at 750 nM, markedly reduced unstimulated insulin release (ca. 50%, P less than 0.025), whereas it did not modify glucagon output. At the same concentration, amylin also blocked the insulin response to 9 mM glucose (ca. 80%, P less than 0.025) without affecting the suppressor effect of glucose on glucagon release. The inhibitory effect of amylin on glucose-induced insulin secretion was confirmed by lowering the amylin concentration (500 nM) and increasing the glucose stimulus (11 mM); again, no effect of amylin on glucagon release was observed. Finally, amylin, at 500 nM, reduced the insulin response to 3.5 mM arginine (ca. 40%, P less than 0.025) without modifying the secretion of glucagon elicited by this amino acid. It can be concluded that, in the rat pancreas, the inhibitory effect of homologous amylin on unstimulated insulin secretion, as well as on the insulin responses to metabolic substrates (glucose and arginine), favours the concept of this novel peptide as a potential diabetogenic agent.  相似文献   

19.
Central nervous system affects pancreatic secretion of enzymes however, the neural modulation of acute pancreatitis has not been investigated. Leptin and melatonin have been recently reported to affect the inflammatory response of various tissues. The identification of specific receptors for both peptides in the pancreas suggests that leptin and melatonin could contribute to the pancreatic protection against inflammation. The aim of this study was: 1/ to compare the effect of intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) administration of leptin or melatonin on the course of caerulein-induced pancreatitis (CIP) in the rat, 2/ to examine the involvement of sensory nerves (SN) and calcitonin gene-related peptide (CGRP) in pancreatic protection afforded by leptin or melatonin, 3/ to assess the effect of tested peptides on lipid peroxidation products (MDA + 4-HNE) in the pancreas of CIP rats, 4/ to investigate the influence of leptin or melatonin on nitric oxide (NO) release from isolated pancreatic acini and 5/ to determine the effects of caerulein and leptin on leptin receptor gene expression in these acini by RT-PCR. CIP was induced by subcutaneous (s.c.) infusion of caerulein (25 microg/kg) to the conscious rats, confirmed by the significant increases of pancreatic weight and plasma amylase and by histological examination. This was accompanied in marked reduction of pancreatic blood flow and significant rise of MDA + 4-HNE in the pancreas. Leptin or melatonin were administered i.p. or i.c.v. 30 min prior to the start of CIP. Deactivation of SN was produced by s.c. capsaicin (100 mg/kg). An antagonist of CGRP, CGRP 8-37 (100 microg/kg i.p.), was given together with leptin or melatonin to the CIP rats. MDA + 4-HNE was measured using LPO commercial kit. NO was determined using the Griess reaction. Pretreatment of CIP rats with i.p. leptin (2 or 10 microg/kg) or melatonin (10 or 50 mg/kg) significantly attenuated the severity of CIP. Similar protective effects were observed following i.c.v. application of leptin (0.4 or 2 microg/rat) but not melatonin (10 or 40 microg/rat) to the CIP rats. Capsaicin deactivation of SN oradministration of CGRP 8-37 abolished above beneficial effects of leptin on CIP, whereas melatonin-induced protection of pancreas was unaffected. Pretreatment with i.p. melatonin (10 or 50 mg/kg), but not leptin, significantly reduced MDA + 4-HNE in the pancreas of CIP rats. Leptin (10(-10) - 10(-6) M) but not melatonin (10(-8) - 10(-5) M) significantly stimulated NO release from isolated pancreatic acini. Leptin receptor gene expression in these acini was significantly increased by caerulein and leptin. We conclude that 1/ central or peripheral pretreatment with leptin protects the pancreas against its damage induced by CIP, whereas melatonin exerts its protective effect only when given i.p., but not following its i.c.v. adminstration, 2/ activation of leptin receptor in the pancreatic acini appears to be involved in the beneficial effects of leptin on acute pancreatitis, 3/ the protective effects of leptin involve sensory nerves, CGRP and increased generation of NO whereas melatonin-induced protection of the pancreas depends mainly on the antioxidant local effect of this indole, and scavenging of the radical oxygen species in the pancreatic tissue.  相似文献   

20.
Lung structural changes and immunoreactivity of endothelial (eNOS)- and inducible nitric oxide synthase (iNOS) were investigated by light microscopy in lungs of treated and untreated diabetic rats. Diabetes was induced by a single intraperitoneal (i.p.) injection of 65 mg kg(-1) streptozotocin (STZ) in Wistar albino male rats. Diabetic rats received daily i.p. doses of dexamethasone (2 mg kg(-1)), leptin (0.5 microg kg(-1)) and intramuscular insulin (20 U kg(-1)) or a combination of these drugs for 1 week starting 4 weeks after the STZ injections. After treatment, the blood levels of glucose, leptin, insulin and nitrate/nitrite (NO(3) (-)/NO(2) (-)) were measured. Dilatation of alveoli and alveolar ducts, partial alveolar wall thickening and increased eNOS- and iNOS characterized the diabetic rat lungs. High blood glucose and nitrate/nitrite levels as well as low insulin and leptin levels were also present. Treatment with insulin, dexamethasone and a combination of these drugs resulted in improvement of the structural and immunohistochemical abnormalities. The most effective treatment was insulin therapy. Leptin administration resulted in increased relative amounts of extracellular material, which led to noticeable respiratory efficiency in the diabetic rat lungs. All treatments except leptin lowered blood glucose levels. The combination of insulin and dexamethasone increased blood leptin and insulin, while the remaining diabetic rats had blood with low leptin and insulin concentrations. These results suggest that therapy with insulin plus dexamethasone but not therapy with leptin is beneficial for diabetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号