首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mucosal-to-serosal and serosal-to-mucosal fluxes of Na+ and Cl- were carried out in control and heat-labile enterotoxin treated mice in the presence or absence of Ca2(+)-ionophore A23187, the activator of Ca2(+)-calmodulin or Phorbol-12-myristate-13-acetate (PMA), the activator of Protein kinase C (PKC) or 1-(5-isoquinolinyl sulphonyl)-2-methyl piperazine (H-7), an inhibitor of PKC. There was net secretion of Na+ and Cl- in experimental group in comparison to net absorption in control group. The addition of ionophore or PMA resulted in net secretion of Na+ and Cl- in control group. In experimental group ionophore increased the net secretion of Na+ and Cl- while, PMA could not cause any change in Na+ and Cl- fluxes in experimental group. Calmodulin activity remained unaltered in heat-labile enterotoxin treated mice as compared to control. H-7, reversed the effects of PMA and heat-labile enterotoxin. These studies demonstrate that heat-labile enterotoxin primarily involves PKC in its action.  相似文献   

2.
The unidirectional fluxes of Na+ and Cl- were studied in Salmonella typhimurium enterotoxin-treated rats. There was net secretion of Na+ and Cl- in toxin-treated animals, while in control animals there was net absorption of these ions. In the presence of the Ca(2+)-ionophore, there was net secretion of Na+ and Cl- in the control group, while the ionophore enhanced the secretion of these ions in experimental animals. The calcium channel blocker, verapamil, decreased the secretion induced by salmonella toxin, but could not reverse the secretion to absorption. There was no difference in the net absorption of Ca2+ in both the control and experimental animals. There was a significant increase in the intracellular free calcium concentrations in enterocytes isolated from toxin-treated rat intestines as compared to that in enterocytes isolated from control animals. In the presence of PMA (phorbol-12-myristated-13-acetate) there was net secretion of Na+ and Cl- in the control group, while in the experimental group there was no change in the fluxes of these ions. The selective, potent inhibitor of protein kinase C, H-7 (1-(5-isoquinolinylsulphonyl)-2-methylpiperazine) reversed the secretion of Na+ and Cl- in the toxin-treated group to absorption. The addition of indomethacin also inhibited the secretion induced by salmonella toxin, but failed to reverse it to absorption. However, the addition both H-7 and indomethacin to the experimental group had a partial additive effect. These studies demonstrate that the Salmonella enterotoxin-mediated fluid secretion involves protein kinase C and the arachidonic acid metabolites and perhaps does not involve the extracellular calcium pools.  相似文献   

3.
The unidirectional fluxes of Na+, Cl- and Ca2+ and activities of calmodulin in the intestinal microvillar core were studied in Escherichia coli heat-stable enterotoxin-treated mice. There was net secretion of Na+ and Cl- in toxin-treated animals, while in control animals there was net absorption of these ions. In both control and experimental animals, there was net absorption of Ca2+; however, the absorption was significantly higher (P less than 0.01) in experimental animals when compared to controls. In the presence of Ca2+-ionophore, there was a net secretion of Na+ and Cl- in controls, while the Ca2+-ionophore could not cause any change in the fluxes of these ions in experimental animals. The activity of calmodulin was significantly higher (P less than 0.01) in experimental animals. Verapamil, a calcium channel blocker, and trifluoperazine, a calmodulin inhibitor, reversed the effects of Ca2+-ionophore and heat-stable enterotoxin. These studies demonstrate that the toxin acts through Ca2+-calmodulin, and secretion of Na+ and Cl- in experimental animals is due to an increase in calcium absorption and an increase in calmodulin activity in the intestinal microvillar core.  相似文献   

4.
The mucosal-to-serosal and serosal-to-mucosal fluxes of Na+ and Cl- were carried out in control and experimental groups treated with different doses of heat-labile enterotoxin in the presence or absence of Ca2+-ionophore, Ca2+ channel blocker and calmodulin inhibitor. There was net secretion of Na+ and Cl- in 16 and 32 units of heat-labile enterotoxin treated groups in comparison to net absorption in control group, however, in animals treated with 8 units of heat-labile enterotoxin, no change in Na+ and Cl- fluxes was found when compared to control. Ca2+- ionophore increased net secretion of Na+ and Cl- in 16 and 32 units of heat-labile enterotoxin treated groups and also caused secretion in control group instead of net absorption. Ca2+ channel blocker and calmodulin inhibitor partially reversed the effect of heat-labile enterotoxin. The effect of Ca2+-ionophore was more pronounced in the control group while that of Ca2+ channel blocker and calmodulin inhibitor was more pronounced in 16 and 32 units of heat-labile enterotoxin treated groups. The findings suggest the involvement of Ca2+ and calmodulin in the action of heat-labile enterotoxin of Escherichia coli in mice.  相似文献   

5.
Using the fluorescent probe, BCECF, the changes in intracellular pH (pHi) in rat peritoneal mast cells were studied. alpha-Thrombin (0.1 nM) induced biphasic changes in pHi which consisted in a temporary decrease in pH with its subsequent steady increase due to the Na/H exchange activation which was inhibited by EIPA and controlled by extracellular Na+. The biphasic changes in pHi induced by DIP-alpha-thrombin (0.1 pM-1 nM), a catalytically inactive form with an intact recognition site, were similar to those of alpha-thrombin, whereas beta/gamma-thrombin (10-1000 pM), a catalytically active form characterized by structural disturbances in the recognition site, was able to induce only the initial phase of acidification. The thrombin recognition site modulators, alpha 1-thymosin and heparin, blocked the ability of the enzyme to induce the alkalinization of pHi. Nigericin stimulated the Na/H-exchange in mast cells. The rate of the Na/H-exchange activation determined with nigericin, decreased with an increase in the alpha-thrombin dose from 0.1 pM up to 10 nM. Activation of protein kinase C (PKC) in mast cells by PMA used at 1 nM and 10 nM led to the alkalinization of the cytoplasm as a result of the Na/H-exchange activation blocked by EIPA. The PKC inhibitor, H-7, suppressed the pHi increase induced by both PMA and alpha-thrombin. The alpha-thrombin-induced acidification of the cytoplasm was completely blocked by SITS in Ca(2+)-free media, whereas in media with Ca2+ SITS inhibited the pHi decline. Acidification of the cytoplasm by thrombin seems to be due to both Ca2+ influx and activation of Cl- fluxes. It is concluded that the observed activation of the Na/H-exchange by thrombin is induced by a cascade of intracellular reactions involving PKC.  相似文献   

6.
The unidirectional fluxes of Na+ and Cl? were studied in Salmonella typhimurium enterotoxin-treated rats. There was net secretion of Na+ and Cl? in toxin-treated animals, while in control animals there was net absorption of these ions. In the presence of the Ca2+-ionophore, there was net secretion of Na2+ and Cl? in the control group, while the ionophore enhanced the secretion of these ions in experimental anaimals. The calcium channel blocker, verapamil, decreased the secretion induced by salmonella toxin, but could not reverse the secretion of absorption. There was no difference in the net absorption of Ca2+ in both the control and experimental animals. There was a significant increase in the intracellular free calcium concentrations in enterocytes isolated from toxin-treated rat intestines as compared to that in enterocytes isolated from control animals. In the presence of PMA (phorobol-12-myristated-13-acetate) there was net secretion of Na+ and Cl? in the control group, while in the experimental group there was no change in the fluxes of these ions. The selective, potent inhibitor of protein kinase C, H-7 (1-(5-isoquinolinylsulphonyl)-2-methylpiperazine)_reversed the secretion of Na+ and Cl? in the toxin-treated group to absorption. The addition of indomethacin also inhibited the secretion induced by salmonella toxin, but failed to reverse it to absorption. However, the addition both H-7 and indomethacin to the experimental group had a partial additive effect. These studies demonstrate that the Salmonella enterotoxin-mediated fluid secretion involved protein kinase C and the arachidonic acid metabolites and perhaps does not involve the extracellular calcium pools.  相似文献   

7.
Bradykinin (BK) triggered long lasting intracellular free calcium ([Ca2+]i) oscillation in polyoma middle T-transformed cell line MT3 cells but not in the parental NIH3T3 cells. This periodic [Ca2+]i fluctuation was extracellular Ca(2+)-dependent and blocked by pretreatments with Ca2+ channel blockers, SK&F 96365 or CdCl2, suggesting a crucial role of Ca2+ entry across the plasma membrane possibly through a receptor-operated Ca2+ channel. Brief pretreatment with phorbol myristate acetate (PMA) completely abolished the BK-induced [Ca2+]i oscillation, and a protein kinase C (PKC) inhibitor, H-7, reversed the effect of PMA, indicating involvement of PKC. On the other hand, in some cells, oscillatory changes in [Ca2+]i were seen without agonist stimulation. The spontaneous oscillation was also dependent on extracellular Ca2+, but neither treatment with PMA nor H-7 had any effect under the same conditions.  相似文献   

8.
Lee IS  Hur EM  Suh BC  Kim MH  Koh DS  Rhee IJ  Ha H  Kim KT 《Cellular signalling》2003,15(5):529-537
Insulin secretion is known to depend on an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). However, recent studies have suggested that insulin secretion can also be evoked in a Ca(2+)-independent manner. In the present study we show that treatment of intact mouse islets and RINm5F cells with protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) or protein kinase A (PKA) activator forskolin promoted insulin secretion with no changes of [Ca(2+)](i). Moreover, insulin secretion mediated by PMA or forskolin was maintained even when extracellular or cytosolic Ca(2+) was deprived by treatment of cells with ethylene glycol bis(beta-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) or 1,2-bis(2-amino phenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxy methyl ester) (BAPTA/AM) in RINm5F cells. The secretagogue actions of PMA and forskolin were blocked by GF109203X and H89, selective inhibitors for PKC and PKA, respectively. PMA treatment caused translocation of PKC-alpha and PKC- epsilon from cytosol to membrane, implying that selectively PKC-alpha and PKC- epsilon isoforms might be important for insulin secretion. Co-treatment with high K(+) and PMA showed a comparable level of insulin secretion to that of PMA alone. In addition, PMA and forskolin evoked insulin secretion in cells where Ca(2+)-dependent insulin secretion was completed. Our data suggest that PKC and PKA can elicit insulin secretion not only in a Ca(2+)-sensitive manner but also in a Ca(2+)-independent manner from separate releasable pools.  相似文献   

9.
Nicotinic stimulation and high K(+)-depolarization of chromaffin cells cause disassembly of cortical filamentous actin networks and redistribution of scinderin, a Ca(2+)-dependent actin filament-severing protein. These events which are Ca(2+)-dependent precede exocytosis. Activation of scinderin by Ca2+ may cause disassembly of actin filaments leaving cortical areas of low cytoplasmic viscosity which are the sites of exocytosis (Vitale, M. L., A. Rodríguez Del Castillo, L. Tchakarov, and J.-M. Trifaró. 1991. J. Cell. Biol. 113:1057-1067). It has been suggested that protein kinase C (PKC) regulates secretion. Therefore, the possibility that PKC activation might modulate scinderin redistribution was investigated. Here we report that PMA, a PKC activator, caused scinderin redistribution, although with a slower onset than that induced by nicotine. PMA effects were independent of either extra or intracellular Ca2+ as indicated by measurements of Ca2+ transients, and they were likely to be mediated through direct activation of PKC because inhibitors of the enzyme completely blocked the response to PMA. Scinderin was not phosphorylated by the kinase and further experiments using the Na+/H+ antiport inhibitors and intracellular pH determinations, demonstrated that PKC-mediated scinderin redistribution was a consequence of an increase in intracellular pH. Moreover, it was shown that scinderin binds to phosphatidylserine and phosphatidylinositol 4,5-biphosphate liposomes in a Ca(2+)-dependent manner, an effect which was modulated by the pH. The results suggest that under resting conditions, cortical scinderin is bound to plasma membrane phospholipids. The results also show that during nicotinic receptor stimulation both a rise in intracellular Ca2+ and pH are observed. The rise in intracellular pH might be the result of the translocation and activation of PKC produced by Ca2+ entry. This also would explain why scinderin redistribution induced by nicotine is partially (26-40%) inhibited by inhibitors of either PKC or the Na+/H+ antiport. In view of these findings, a model which can explain how scinderin redistribution and activity may be regulated by pH and Ca2+ in resting and stimulated conditions is proposed.  相似文献   

10.
The mechanism for oxytocin's (OT) stimulation of PGF(2alpha) secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca(2+) and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca(2+) by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF(2alpha) release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF(2alpha) secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) release. These results are consistent with the hypothesis that OT mobilizes Ca(2+) to activate a Ca(2+)-dependent PKC pathway to promote PGF(2alpha) secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

11.
Myristate (C14:0) was found to significantly activate partially purified rat brain Ca(2+)- and phospholipid-dependent protein kinase (PKC). The Ka value, the concentration needed for half maximum activation, for C14:0 in the presence of 1 microM Ca2+ and 20 microM phosphatidylserine (PS) was 20 microM. This activation required Ca2+ and acidic phospholipid and was associated with a decreased Ka for Ca2+ of the enzyme to 10 microM in an analogous fashion as dioleoylglycerol (DO) or phorbol myristate acetate (PMA). The phospholipid requirement for the activation was concentration dependent and was inhibited by 1-(5-isoquinolinesulfonyl)-methylpiperazine dihydrochloride (H-7), a inhibitor of this enzyme. The concentration of H-7 required for half inhibition of the enzyme was about 15 microM and maximum inhibition was about 75%. The concentration profile of cytoplasmic proteins phosphorylated by C14:0-activated PKC was similar to that by PMA-activated PKC. The 47 kDa protein of guinea pig neutrophil was also phosphorylated by the C14:0-activated PKC. It is further discussed whether PKC can function as signal transduction for stimulus-mediated generation of superoxide in neutrophils.  相似文献   

12.
Using the voltage-clamp technique, a possible role of protein kinase C in regulation of Na+ transport in the skin of the frog Rana temporaria was investigated. It was shown that protein kinase C activator phorbol ester 12-myristate 13-acetate (PMA), applied to the apical surface of the skin, stimulated transepithelial Na+ transport, measured as amiloride-sensitive short-circuit current, and also increased such electrical characteristics of frog skin as the open-circuit potential and transepithelial conductance. PMA exerts a similar stimulation effect on Na+ transport across the tadpole skin. Specific inhibitors of protein kinase C, chelerythryne or H-7, almost fully prevented the PMA-induced stimulation of Na+ transport. These data support a concept that the response to PMA was indeed mediated by PKC activation. The results are compatible with the important role played by protein kinase C in regulation of transepithelial Na+ transport in the skin of R. temporaria.  相似文献   

13.
Studies from our laboratory have demonstrated rapid ( < 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC activity and a PKC-dependent Ca(2+) entry through L-type Ca(2+) channels specifically by mineralocorticoids in distal colon. Aldosterone directly stimulates the activity of the PKC alpha isoform (but not PKC delta, PKC epsilon and PKC zeta) in a cell-free assay system containing only purified commercially available enzyme, appropriate substrate peptide, co-factors and lipid vesicles. The primary ion transport target of the non-genomic signal transduction cascade elicited by aldosterone in epithelia is the Na(+)-H(+) exchanger. In isolated colonic crypts, aldosterone produced a PKC alpha sensitive intracellular alkalinisation within 1 min of hormone addition. Intracellular alkalinisation upregulates an ATP-dependent K(+) channel, which is involved in K(+) recycling to maintain the electrical driving force for Na(+) absorption, while inhibiting a Ca(2+) -dependent K(+) channel, which generates the charge balance for Cl(-) secretion. The non-genomic response to aldosterone in distal colon appears to enhance the capacity for absorption while down-regulating the potential for secretion. We have also demonstrated rapid (< 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC alpha activity, and a PKC delta- and PKA-dependent Ca(2+) entry through di-hydropyridine-blockable Ca(2+) channels specifically by 17beta-estradiol in distal colon. These rapid effects are female gender specific and are insensitive to inhibitors of the classical estrogen receptor (ER). 17 beta-Estradiol directly stimulated the activity of both PKC delta and PKC alpha (but not PKC epsilon or PKC zeta) in a cell-free assay system. E2 rapidly inhibited basolateral K(Ca) channel activity which would be expected to result in an acute inhibition of Cl(-) secretion. Physiological concentrations of E2 (0.1-10 nM) reduced both basal and secretagogue-induced Cl(-) secretion. This anti-secretory effect of E2 is sensitive to PKC inhibition, intracellular Ca(2+) chelation, and is female gender specific and insensitive to inhibitors of the classical ER. These observations link rapid non-genomic activation of second messengers with a rapid gender-specific physiological effect in the whole tissue. Aldosterone and E2 differ in their protein kinase signal transduction and both hormones stimulate specific PKC isoforms indicating both common and divergent signalling systems for salt-retaining steroid hormones. The physiological function of non-genomic effects of aldosterone and estradiol is to shift the balance from net secretion to net absorption in a pluripotential epithelium.  相似文献   

14.
Agonist-specific regulation of [Na+]i in pancreatic acinar cells   总被引:1,自引:1,他引:0  
In a companion paper (Zhao, H., and S. Muallem. 1995), we describe the relationship between the major Na+,K+, and Cl- transporters in resting pancreatic acinar cells. The present study evaluated the role of the different transporters in regulating [Na+]i and electrolyte secretion during agonist stimulation. Cell stimulation increased [Na+]i and 86Rb influx in an agonist-specific manner. Ca(2+)-mobilizing agonists, such as carbachol and cholecystokinin, activated Na+ influx by a tetraethylammonium-sensitive channel and the Na+/H+ exchanger to rapidly increase [Na+]i from approximately 11.7 mM to between 34 and 39 mM. As a consequence, the NaK2Cl cotransporter was largely inhibited and the activity of the Na+ pump increased to mediate most of the 86Rb(K+) uptake into the cells. Secretin, which increases cAMP, activated the NaK2Cl cotransporter and the Na+/H+ exchanger to slowly increase [Na+]i from approximately 11.7 mM to an average of 24.6 mM. Accordingly, secretin increased total 86Rb uptake more than the Ca(2+)- mobilizing agonists and the apparent coupling between the NaK2Cl cotransport and the Na+ pump. All the effects of secretin could be attributed to an increase in cAMP, since forskolin affected [Na+]i and 86Rb fluxes similar to secretin. The signaling pathways mediating the effects of the Ca(2+)-mobilizing agonists were less clear. Although an increase in [Ca2+]i was required, it was not sufficient to account for the effect of the agonists. Activation of protein kinase C stimulated the NaK2Cl cotransporter to increase [Na+]i and 86Rb fluxes without preventing the inhibition of the cotransporter by Ca(2+)-mobilizing agonists. The effects of the agonists were not mediated by changes in cell volume, since cell swelling and shrinkage did not reproduce the effect of the agonists on [Na+]i and 86Rb fluxes. The overall findings of the relationships between the various Na+,K+, and Cl- transporters in resting and stimulated pancreatic acinar cells are discussed in terms of possible models of fluid and electrolyte secretion by these cells.  相似文献   

15.
Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase.  相似文献   

16.
The effect of vanadate (orthovanadate, VO4-) on water and ion transport was studied in rat jejunum. Water transport was tested by single-pass perfusion in vivo and ion fluxes by the Ussing-chamber technique in vitro. The results suggest that vanadate has two actions on ion and water transport: At low concentrations (10(-4) M) it causes Cl-, Na+ and water secretion by stimulation of adenylate cyclase; At higher concentrations (10(-3) and 10(-2) M) it decreases net absorption of Na+ and Cl- by inhibition of (Na+ + K+)-ATPase.  相似文献   

17.
The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite.  相似文献   

18.
The mechanism for oxytocin's (OT) stimulation of PGF2alpha secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca2+ and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca2+ by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF2alpha release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF2alpha secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF2alpha secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF2alpha release. These results are consistent with the hypothesis that OT mobilizes Ca2+ to activate a Ca2+-dependent PKC pathway to promote PGF2alpha secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

19.
Phorbol esters were used to investigate the action of protein kinase C (PKC) on insulin secretion from pancreatic beta-cells. Application of 80 nM phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, had little effect on glucose (15 mM)-induced insulin secretion from intact rat islets. In islets treated with bisindolylmaleimide (BIM), a PKC inhibitor, PMA significantly reduced the glucose-induced insulin secretion. PMA decreased the level of intracellular Ca(2+) concentration ([Ca(2+)](i)) elevated by the glucose stimulation when tested in isolated rat beta-cells. This inhibitory effect of PMA was not prevented by BIM. PMA inhibited glucose-induced action potentials, and this effect was not prevented by BIM. Further, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, produced an effect similar to PMA. In the presence of nifedipine, the glucose stimulation produced only depolarization, and PMA applied on top of glucose repolarized the cell. When applied at the resting state, PMA hyperpolarized beta-cells with an increase in the membrane conductance. Recorded under the voltage-clamp condition, PMA reduced the magnitude of Ca(2+) currents through L-type Ca(2+) channels. BIM prevented the PMA inhibition of the Ca(2+) currents. These results suggest that activation of PKC maintains glucose-stimulated insulin secretion in pancreatic beta-cells, defeating its own inhibition of the Ca(2+) influx through L-type Ca(2+) channels. PKC-independent inhibition of electrical excitability by phorbol esters was also demonstrated.  相似文献   

20.
Protein kinase C (PKC) exhibits both negative and positive cross-talk with multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in PC12 cells. PKC effects negative cross-talk by inhibiting the mobilization of intracellular Ca2+ stores and by inhibiting Ca2+ influx through voltage-sensitive Ca2+ channels. In the absence of cross-talk, Ca2+ influx induced by depolarization with 56 mM K+ stimulates CaM kinase and its autophosphorylation and converts up to 50% of the enzyme to a Ca(2+)-independent or autonomous species. Acute treatment with phorbol myristate acetate (PMA) elicits a parallel reduction in depolarization-induced Ca2+ influx and in generation of autonomous CaM kinase. Negative cross-talk also occurs during stimulation of the phosphatidylinositol signaling system with bradykinin, which activates both PKC and CaM kinase. The extent of CaM kinase activation is attenuated by the simultaneous activation of PKC; it is enhanced by prior down-regulation of PKC. PKC also exhibits positive cross-talk with CaM kinase. Submaximal activation of CaM kinase by ionomycin is potentiated by concurrent activation of PKC with PMA. Such PMA treatment is found to increase the level of cytosolic calmodulin. Enhanced activation of CaM kinase by PKC may result from PKC-mediated phosphorylation of calmodulin-binding proteins, such as neuromodulin and MARCKS, and the subsequent increase in the availability of previously bound calmodulin for activation of CaM kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号