首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the regulation of cell signaling by lipid phosphate phosphatases (LPPs) that control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. A structural model of the LPPs, that were previously called Type 2 phosphatidate phosphatases, is described. LPPs are characterized by having no Mg2+ requirement and their insensitivity to inhibition by N-ethylmaleimide. The LPPs have six putative transmembrane domains and three highly conserved domains that define a phosphatase superfamily. The conserved domains are juxtaposed to the proposed membrane spanning domains such that they probably form the active sites of the phosphatases. It is predicted that the active sites of the LPPs are exposed at the cell surface or on the luminal surface of intracellular organelles, such as Golgi or the endoplasmic reticulum, depending where various LPPs are expressed. LPPs could attenuate cell activation by dephosphorylating bioactive lipid phosphate esters such as phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. In so doing, the LPPs could generate alternative signals from diacylglycerol, sphingosine and ceramide. The LPPs might help to modulate cell signaling by the phospholipase D pathway. For example, phosphatidate generated within the cell by phospholipase D could be converted by an LPP to diacylglycerol. This should change the relative balance of signaling by these two lipids. Another possible function of the LPPs relates to the secretion of lysophosphatidate and sphingosine 1-phosphate by activated platelets and other cells. These exogenous lipids activate phospholipid growth factor receptors on the surface of cells. LPP activities could attenuate cell activation by lysophosphatidate and sphingosine 1-phosphate through their respective receptors.  相似文献   

2.
This article describes the regulation of cell signaling by lipid phosphate phosphatases (LPPs) that control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. A structural model of the LPPs, that were previously called Type 2 phosphatidate phosphatases, is described. LPPs are characterized by having no Mg(2+) requirement and their insensitivity to inhibition by N-ethylmaleimide. The LPPs have six putative transmembrane domains and three highly conserved domains that define a phosphatase superfamily. The conserved domains are juxtaposed to the proposed membrane spanning domains such that they probably form the active sites of the phosphatases. It is predicted that the active sites of the LPPs are exposed at the cell surface or on the luminal surface of intracellular organelles, such as Golgi or the endoplasmic reticulum, depending where various LPPs are expressed. LPPs could attenuate cell activation by dephosphorylating bioactive lipid phosphate esters such as phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. In so doing, the LPPs could generate alternative signals from diacylglycerol, sphingosine and ceramide. The LPPs might help to modulate cell signaling by the phospholipase D pathway. For example, phosphatidate generated within the cell by phospholipase D could be converted by an LPP to diacylglycerol. This should change the relative balance of signaling by these two lipids. Another possible function of the LPPs relates to the secretion of lysophosphatidate and sphingosine 1-phosphate by activated platelets and other cells. These exogenous lipids activate phospholipid growth factor receptors on the surface of cells. LPP activities could attenuate cell activation by lysophosphatidate and sphingosine 1-phosphate through their respective receptors.  相似文献   

3.
4.
5.
The role of phosphatases in signal transduction   总被引:10,自引:0,他引:10  
The importance of phosphatases in regulating the phosphorylation of proteins involved in cell signaling has been demonstrated by four recent discoveries. First, a new family of receptor-like transmembrane phosphotyrosine phosphatases, highly conserved throughout evolution, was shown to be distributed in a wide variety of tissues. Extensive heterogeneity in the extracellular regions of these molecules points to the existence of a wide diversity of ligands. These ligands are thought to mediate transduction of signals to the cell interior by means of the phosphatase activity occurring within the cytoplasmic domains of the receptor-like transmembrane phosphotyrosine phosphatases. Second, cell-permeable tumor promoters, such as okadaic acid, were shown to be potent phosphatase inhibitors that have multiple effects on signaling pathways. Third, the subunits of the type 2A phosphatase were found to associate with transforming antigens encoded by DNA tumor viruses, indicating a role for phosphatases in mediating abnormal proliferative events. Fourth, several cell-cycle mutants were found to encode phosphatases. This review focuses on the significance of the transmembrane phosphotyrosine phosphatases and on the possible ways in which intracellular phosphatases function in signaling pathways.  相似文献   

6.
《Molecular cell》2022,82(6):1089-1106.e12
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   

7.
Blood platelets play an essential role in ischemic heart disease and stroke contributing to acute thrombotic events by release of potent inflammatory agents within the vasculature. Lysophosphatidic acid (LPA) is a bioactive lipid mediator produced by platelets and found in the blood and atherosclerotic plaques. LPA receptors on platelets, leukocytes, endothelial cells, and smooth muscle cells regulate growth, differentiation, survival, motility, and contractile activity. Definition of the opposing pathways of synthesis and degradation that control extracellular LPA levels is critical to understanding how LPA bioactivity is regulated. We show that intact platelets and platelet membranes actively dephosphorylate LPA and identify the major enzyme responsible as lipid phosphate phosphatase 1 (LPP1). Localization of LPP1 to the platelet surface is increased by exposure to LPA. A novel receptor-inactive sn-3-substituted difluoromethylenephosphonate analog of phosphatidic acid that is a potent competitive inhibitor of LPP1 activity potentiates platelet aggregation and shape change responses to LPA and amplifies LPA production by agonist-stimulated platelets. Our results identify LPP1 as a pivotal regulator of LPA signaling in the cardiovascular system. These findings are consistent with genetic and cell biological evidence implicating LPPs as negative regulators of lysophospholipid signaling and suggest that the mechanisms involve both attenuation of lysophospholipid actions at cell surface receptors and opposition of lysophospholipid production.  相似文献   

8.
Lipid chemotaxis and signal transduction in Myxococcus xanthus   总被引:4,自引:0,他引:4  
The lipid phosphatidylethanolamine (PE) is the first chemoattractant to be described for a surface-motile bacterium. In Myxococcus xanthus, the specific activity of PE is determined by its fatty acid components. Two active species have been identified: dilauroyl PE and dioleoyl PE. Excitation to dilauroyl PE requires fibril appendages and the presence of two cytoplasmic chemotaxis systems, of which one (Dif) appears to mediate excitation and the other (Frz) appears to mediate adaptation. A possible mechanism for fibril-mediated signal transduction is discussed, along with the potential roles for PE chemotaxis in the context of the M. xanthus life cycle.  相似文献   

9.
Lipid metabolism and signal transduction in endothelial cells   总被引:3,自引:0,他引:3  
Endothelial cells have the capacity to metabolize several important lipids; this includes the ability to store and then metabolize arachidonate, as well as the capacity to synthesize platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Arachidonate is predominantly metabolized via cyclooxygenase to PGI2 although the spectrum of prostaglandins may vary depending upon the source of the endothelial cell. Biosynthesis of eicosanoids and PAF are likely to be an important physiologic function of the endothelial cell as these potent lipids appear to have a role in maintaining vascular tone and mediating interactions of the endothelium with circulating inflammatory cells. In addition to production of eicosanoids and PAF, endothelial cells metabolize exogenous arachidonate and arachidonate metabolites and other fatty acids such as linoleate to bioactive compounds (HODEs). There is also evidence that small amounts of arachidonate are metabolized via a lipoxygenase. The physiologic significance of these minor lipid pathways is not known at this time. Production of eicosanoids and PAF is not a constitutive function of the endothelial cell. Lipid biosynthesis by endothelial cells is one component of the early activation response that occurs in response to stimulation with pro-inflammatory and vasoactive hormones or to pathologic agents such as oxidants and bacterial toxins. A central mechanism for activation of the relevant pathways is a rise in cellular calcium concentrations that can be mediated by hormone-receptor-binding or by direct permeabilization of the cell membrane to calcium (Fig. 3). Regulatory mechanisms distal to the calcium signal are unknown, but current evidence suggests that calcium directly or indirectly activates phospholipases that release arachidonate from phospholipids and hydrolyze a specific phospholipid to the immediate precursor of PAF. There is evidence that protein kinase C may, in part, regulate this process, but the role of other potential regulatory components, such as other protein kinases or G-proteins is not known. As noted above, the most direct mechanism for initiation of PAF biosynthesis and arachidonate release would be activation of a phospholipase A2 as shown in Fig. 3. Activation of other phospholipases (e.g. phospholipase C) may contribute to the total amount of arachidonate released, although the magnitude of that contribution is not yet known. In addition to generation of PAF and eicosanoids, activation of endothelial cell phospholipases generates second messengers that are important in intracellular signaling (Fig. 4). Activation of phospholipase C, in response to hormonal stimulation, generates diacylglycerol and inositol phosphates from phosphatidylinositol. Each of these is a potent intracellular second messenger.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
脂筏与T细胞信号转导   总被引:2,自引:0,他引:2  
抗原提呈细胞将抗原加工处理后通过MHCⅠ/MHCⅡ类分子提呈供T细胞识别。TCR对抗原的识别引起一系列下游信号事件的发生,最终使T细胞激活,但对TCR复合物结合抗原后引起胞内区磷酸化的早期事件机制还不是很清楚。最近的研究揭示脂筏参与了这一早期信号事件的发生。脂筏是一种膜脂双层内含有的特殊微区,T细胞膜表面参与T细胞激活的各种关键信号分子都定位于脂筏。T细胞激活过程中脂筏通过聚集和重分配形成一个信号转导的平台。  相似文献   

11.
Lipid phosphate phosphatases (LPPs) are a group of enzymes that belong to a phosphatase/phosphotransferase family. Mammalian LPPs consist of three isoforms: LPP1, LPP2, and LPP3. They share highly conserved catalytic domains and catalyze the dephosphorylation of a variety of lipid phosphates, including phosphatidate, lysophosphatidate (LPA), sphingosine 1-phosphate (S1P), ceramide 1-phosphate, and diacylglycerol pyrophosphate. LPPs are integral membrane proteins, which are localized on plasma membranes with the active site on the outer leaflet. This enables the LPPs to degrade extracellular LPA and S1P, thereby attenuating their effects on the activation of surface receptors. LPP3 also exhibits noncatalytic effects at the cell surface. LPP expression on internal membranes, such as endoplasmic reticulum and Golgi, facilitates the metabolism of internal lipid phosphates, presumably on the luminal surface of these organelles. This action probably explains the signaling effects of the LPPs, which occur downstream of receptor activation. The three isoforms of LPPs show distinct and nonredundant effects in several physiological and pathological processes including embryo development, vascular function, and tumor progression. This review is intended to present an up-to-date understanding of the physiological and pathological consequences of changing the activities of the different LPPs, especially in relation to cell signaling by LPA and S1P.  相似文献   

12.
Phosphotyrosine phosphatases (PTPases) are the enzymes which remove phosphate groups from protein tyrosine residues. An enormous number of phosphatases have been cloned and sequenced during the past decade, many of which are expressed in haematopoietic cells. This review focuses on the biochemistry and cell biology of three phosphatases, the transmembrane CD45 and the cytosolic SH2-domain-containing PTPases SHP-1 and SHP-2, to illustrate the diverse ways in which PTPases regulate receptor signal transduction. The involvement of these and other PTPases has been demonstrated in haematopoietic cell development, apoptosis, activation and non-responsiveness. A common theme in the actions of many haematopoietic cell PTPases is the way in which they modulate the thresholds for receptor signalling, thereby regulating critical events in the positive and negative selection of lymphocytes. There is growing interest in haematopoietic PTPases and their associated regulatory proteins as targets for pharmaceutical intervention and in the involvement of these enzymes in human disease.  相似文献   

13.
14.
15.
The study of signal transduction provides fundamental information regarding the regulation of all biologic processes that support the normal function of life. Functional proteomics, a rapidly emerging discipline that aims to understand the expression, function and regulation of the entire set of proteins in a given cell type, tissue or organism, offers unprecedented opportunity for signal transduction research in terms of understanding cellular behavior and regulation at the systems level. Indeed, swift progress in the area of proteomics has demonstrated the major impact of proteomic approaches on signal transduction and biomedical research. In this review, recent and innovative applications of functional proteomics in determining changes in protein contents, modifications, activities and interactions underpinning signaling transduction pathways are discussed.  相似文献   

16.
The study of signal transduction provides fundamental information regarding the regulation of all biologic processes that support the normal function of life. Functional proteomics, a rapidly emerging discipline that aims to understand the expression, function and regulation of the entire set of proteins in a given cell type, tissue or organism, offers unprecedented opportunity for signal transduction research in terms of understanding cellular behavior and regulation at the systems level. Indeed, swift progress in the area of proteomics has demonstrated the major impact of proteomic approaches on signal transduction and biomedical research. In this review, recent and innovative applications of functional proteomics in determining changes in protein contents, modifications, activities and interactions underpinning signaling transduction pathways are discussed.  相似文献   

17.
Lipid phosphate phosphatases (LPPs), integral membrane proteins with six transmembrane domains, dephosphorylate a variety of extracellular lipid phosphates. Although LPP3 is already known to bind to Triton X-100-insoluble rafts, we here report that LPP1 is also associated with lipid rafts distinct from those harboring LPP3. We found that LPP1 was Triton X-100-soluble, but CHAPS-insoluble in LNCaP cells endogenously expressing LPP1 and several LPP1 cDNA-transfected cells including NIH3T3 fibroblasts. In addition to the non-ionic detergent insolubility, LPP1 further possessed several properties formulated for raft-localizing proteins as follows: first, the CHAPS-insolubility was resistant to the actin-disrupting drug cytochalasin D; second, the CHAPS-insoluble LPP1 floated in an Optiprep density gradient; third, the CHAPS insolubility of LPP1 was lost by cholesterol depletion; and finally, the subcellular distribution pattern of LPP1 exclusively overlapped with that of a raft marker, cholera toxin B subunit. Interestingly, confocal microscopic analysis showed that LPP1 was distributed to membrane compartments distinct from those of LPP3. Analysis using various LPP1/LPP3 chimeras revealed that their first extracellular regions determine the different Triton X-100 solubilities. These results indicate that LPP1 and LPP3 are distributed in distinct lipid rafts that may provide unique microenvironments defining their non-redundant physiological functions.  相似文献   

18.
Insulin is the principal regulatory hormone involved in the tight regulation of fuel metabolism. In response to blood glucose levels, it is secreted by the beta cells of the pancreas and exerts its effects by binding to cell surface receptors that are present on virtually all cell types and tissues. In humans, perturbations in insulin function and/or secretion lead to diabetes mellitus, a severe disorder primarily characterized by an inability to maintain blood glucose homeostasis. Furthermore, it is estimated that 90-95% of diabetic patients exhibit resistance to insulin action. Thus an understanding of insulin signal transduction and insulin resistance at the molecular level is crucial to the understanding of the pathogenesis of this disease. The insulin receptor (IR) is a transmembrane tyrosine kinase that becomes activated upon ligand binding. Consequently, the receptor and its downstream substrates become tyrosine phosphorylated. This activates a series of intracellular signaling cascades which coordinately initiate the appropriate biological response. One important mechanism by which insulin signaling is regulated involves the protein tyrosine phosphatases (PTPs), which may either act on the IR itself and/or its substrates. Two well characterized examples include leuckocyte antigen related (LAR) and protein tyrosine phosphatase-1B (PTP-1B). The present review will discuss the current knowledge of these two and other potential PTPs involved in the insulin signaling pathway.  相似文献   

19.
20.
This review summarizes the evolution of ideas concerning insulin signal transduction, the current information on protein ser/thr kinase cascades as signalling intermediates, and their status as participants in insulin regulation of energy metabolism. Best characterized is the Ras-MAPK pathway, whose input is crucial to cell fate decisions, but relatively dispensable in metabolic regulation. By contrast the effectors downstream of PI-3 kinase, although less well elucidated, include elements indispensable for the insulin regulation of glucose transport, glycogen and cAMP metabolism. Considerable information has accrued on PKB/cAkt, a protein kinase that interacts directly with Ptd Ins 3OH phosphorylated lipids, as well as some of the elements further downstream, such as glycogen synthase kinase-3 and the p70 S6 kinase. Finally, some information implicates other erk pathways (e.g. such as the SAPK/JNK pathway) and Nck/cdc42-regulated PAKs (homologs of the yeast Ste 20) as participants in the cellular response to insulin. Thus insulin recruits a broad array of protein (ser/thr) kinases in its target cells to effectuate its characteristic anabolic and anticatabolic programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号