首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Jarrell  A M Kropinski 《Microbios》1977,19(76):103-116
The chemical composition of the lipopolysaccharide (LPS) of the smooth strain Pseudomonas aeruginosa PAO 307 and a spontaneously derived rough mutant, obtained by selection for resistance to the LPS-specific phage E79, are compared. The rough LPS was shown to contain lipid A, heptose, 2-keto 3-deoxyoctonic acid, galactosamine, alanine and phosphate but lacked glucose, rhamnose and fucosamine which were important constituents, on a weight basis, of the smooth LPS. These results, and chromatographic analysis of the polysaccharide fraction indicate that the rough strain lacked side chain material and was defective in its inner core region. The chemical date obtained were consistent with a core in the PAO strain similar to that of strain NCTC 1999, enhancing the evidence for a common core polysaccharide in the LPS of P. aeruginosa strains.  相似文献   

2.
A lipopolysaccharide (LPS)-defective (rough) mutant of Pseudomonas aeruginosa PAO was isolated by selection for resistance to the LPS-specific phage E79. The LPS of this mutant, AK-1012, lacked the O-antigenic side chain-specific amino sugar fucosamine as well as the core-specific sugars glucose and rhamnose. Using this strain, we isolated and characterized a phage, phi PLS27, which is specifically inactivated upon incubation with LPS extracted from rough mutants of P. aeruginosa PAO. phi PLS27 was found to be a Bradley type C phage and was very similar to coliphage T7 in a number of properties, including size, buoyant density, mass, and the number of structural proteins.  相似文献   

3.
FC3-10 is a Klebsiella spp. specific bacteriophage isolated on a rough mutant (strain KT707, chemotype Rd) of K. pneumoniae C3. The bacteriophage receptor for this phage was shown to be the low-molecular mass lipopolysaccharide (LPS) fraction (LPS-core oligosaccharides), specifically the heptose content of the LPS inner-core. This is the first phage isolated on Klebsiella, the receptor for which is the LPS-core. This phage was unable to plate on Salmonella typhimurium LPS mutants with chemotypes Rd2 or Re showing incomplete or no heptose content on their LPS-core, respectively. Spontaneous phage-resistant mutants from different Klebsiella strains were deep-rough LPS mutants or encapsulated revertants from unencapsulated mutant strains.  相似文献   

4.
Extracted lipopolysaccharides (LPS) from one smooth, one semirough, and five rough mutants of Salmonella typhimurium LT2 or LT7, for which the chemical structure of the polysaccharide chain had been elucidated by using methylation analysis, were characterized with passive hemagglutination inhibition and phage inactivation experiments. Each addition of a sugar residue to a LPS from chemotype Rc was reflected in changed serological reactivity and phage-inhibiting activity of a collection of bacteriophages of the isolated LPS. Thus, certain criteria can be established for a classification of rough mutants of S. typhimurium. The observation that the serological RII specificity corresponds to a completed common core polysaccharide was verified. The serological RI specificity was found in LPS with terminal d-galactose I residues. One of the mutants, SL733, yielded a LPS which cross-reacted with anti-O5 factor serum although the polysaccharide was virtually free from contaminating O-specific material. The O5 reactivity was destroyed by alkaline treatment of SL733 LPS. The smooth- and rough-specific Felix O-l (FO) and the rough-specific 6SR and Br2 phages were shown to have their receptors in the LPS. There was a good correlation between the adsorption rate constant to whole cells and the phage inhibiting activity of isolated LPS suggesting that the LPS exert the major influence on the attachment of these phages to the bacteria. The polysaccharide structures in the LPS necessary for attachment of the 6SR and Br2 phages were defined. It was found that measuring the phage-inhibiting properties of isolated LPS as PhI(50) (LPS concentration required to inactivate 50% of the phages under defined conditions) was a more sensitive method for a characterization of the LPS than the serological and chemical assays used.  相似文献   

5.
We investigated the relationship between expression of the O side chain of outer membrane lipopolysaccharide (LPS) and infection by a Shiga toxin 2 (Stx2)-converting phage in normal and benign strains of Escherichia coli. Of 19 wild-type E. coli strains isolated from the feces of healthy subjects, those with low-molecular-weight LPS showed markedly higher susceptibility to lytic and lysogenic infection by Stx2 phages than those with high-molecular-weight LPS. All lysogens produced infectious phage particles and Stx2. The Stx-negative E. coli O157:H7 strain ATCC43888 with an intact O side chain was found to be resistant to lysis by an Stx2 phage and lysogenic infection by a recombinant Stx2 phage, whereas a rfbE mutant deficient in the expression of the O side chain was readily infected by the phage and yielded stable lysogens. The evidence suggests that an O side chain deficiency leads to the creation of new pathotypes of Shiga toxin-producing E. coli (STEC) within the intestinal microflora.  相似文献   

6.
PM2 is an Aeromonas-specific bacteriophage isolated on A. hydrophila strain AH-3. The bacteriophage receptor for this phage was found to be the lipopolysaccharide (LPS), specifically a low-molecular weight LPS fraction (LPS-core oligosaccharides). Mutants resistant to this phage were isolated and found to be devoid of LPS O-antigen and altered in the LPS-core. No other outer-membrane (OM) molecules appeared to be involved in phage binding.  相似文献   

7.
A combinatorial human Fab library was constructed using RNAs from peripheral blood lymphocytes obtained from Japanese encephalitis virus hyper-immune volunteers on pComb3H phagemid vector. The size of the constructed Fab library was 3.3x10(8) Escherichia coli transformants. The library was panned 3 times on the purified Japanese encephalitis virus (JEV) virion, and phage clones displaying JEV antigen-specific Fab were enriched. The enriched phage pool was then screened for clones producing Fab molecule with JEV neutralizing activity by the focus reduction-neutralizing test. Among 188 randomly selected clones, 9 Fab preparations revealed neutralizing activities against JEV strain Nakayama. An E. coli transformed with TJE12B02 clone, which produced human monoclonal Fab with the highest neutralizing activity was cultured in a large scale, and the Fab molecule was purified using affinity chromatography. The purified FabTJE12B02 showed the 50% focus reduction endpoint at the concentration of 50.2 microg/ml (ca. 1,000 nM) when JEV strain Nakayama was used. The FabTJE12B02 recognized E protein of JEV strain Nakayama, and the dissociation equilibrium constant (Kd) of the FabTJE12B02 against purified JEV antigen was calculated as 1.21x10(-8) M. Sequence analysis demonstrated that TJE12B02 used a VH sequence homologous to the VH3 family showing 88.8% homology to germline VH3-23, and used a Vkappa sequence homologous to the VkappaII subgroup showing 92.8% homology to germline A17.  相似文献   

8.
A galactose-negative mutant, nonleaky in respect to fermentation and utilization, isolated from a smooth Salmonella typhimurium strain by phage selection and inferred deficient of uridine diphosphate (UDP)-galactose-epimerase, was used for experiments on relation of somatic lipopolysaccharide (LPS) character to virulence. Extracts of induced mutant cells retained ca. 1% of wild-type epimerase activity and had only ca. 5% of wild-type kinase and uridyl transferase activities; also, some cultural properties of the mutant differed from those of mutants with complete defects of epimerase only. The mutant was not galactose sensitive, presumably because of its kinase defect. Although the mutant had the phage pattern (including C21-sensitivity) of an epimerase mutant, it was susceptible to transduction by phage P22 and was O-agglutinable, even when grown on defined medium; its LPS must therefore contain some O polymer, including endogenous galactose, resulting from residual epimerase activity. Growth on galactose-supplemented medium restored smooth phage sensitivity; since the mutant was partly inducible this may result, at least in part, from increased endogenous production of UDP-galactose. The mutant was made galactose positive by introduction of an F'-gal(+) plasmid. Base-change and frame-shift mutagens did not increase the frequency of reversion above the spontaneous rate. An insertion into the operator-promoter region of the gal operon seems the most likely mechanism of the mutation.  相似文献   

9.
Studies on the Bacteriophage 2 Receptors of Pseudomonas aeruginosa   总被引:6,自引:1,他引:5       下载免费PDF全文
The lysogenization of Pseudomonas aeruginosa strain BI with phage 2 resulted in the loss of the capacity to adsorb the same phage. The absence of phage 2 receptors on the surface of the lysogenized strain BI(2)(8) was confirmed by the failure of purified slime polysaccharide (SPB) or lipopolysaccharide (LPS) to inactivate phage 2. SPB and LPS from a phage 2-resistant strain also failed to inactivate phage 2 in contrast to the phage inactivation exhibited by the SPB and LPS obtained from the wild-type strain BI. Chemically, quantitative differences were apparent when the SPB and LPS of strains BI(2)(8) and BI/2S(2) were compared with those of the wild-type strain BI. The most striking difference noted was the absence of amino sugars in the SPB of strain BI/2S(2). The SPB of strain BI(2)(8) also contained a lower percentage of amino sugars compared with the SPB of the wild-type strain BI.  相似文献   

10.
Isolation of human monoclonal antibodies that neutralize human rotavirus   总被引:8,自引:0,他引:8  
A human antibody library constructed by utilizing a phage display system was used for the isolation of human antibodies with neutralizing activity specific for human rotavirus. In the library, the Fab form of an antibody fused to truncated cp3 is expressed on the phage surface. Purified virions of strain KU (G1 serotype and P[8] genotype) were used as antigen. Twelve different clones were isolated. Based on their amino acid sequences, they were classified into three groups. Three representative clones-1-2H, 2-3E, and 2-11G-were characterized. Enzyme-linked immunosorbent assay with virus-like particles (VLP-VP2/6 and VLP-VP2/6/7) and recombinant VP4 protein produced from baculovirus recombinants indicated that 1-2H and 2-3E bind to VP4 and that 2-11G binds to VP7. The neutralization epitope recognized by each of the three human antibodies might be human specific, since all of the antigenic mutants resistant to mouse monoclonal neutralizing antibodies previously prepared were neutralized by the human antibodies obtained here. After conversion from the Fab form of an antibody into immunoglobulin G1, the neutralizing activities of these three clones toward various human rotavirus strains were examined. The 1-2H antibody exhibited neutralizing activity toward human rotaviruses with either the P[4] or P[8] genotype. Similarly, the 2-3E antibody showed cross-reactivity against HRVs with the P[6], as well as the P[8] genotype. In contrast, the 2-11G antibody neutralized only human rotaviruses with the G1 serotype. The concentration of antibodies required for 50% neutralization ranged from 0.8 to 20 micro g/ml.  相似文献   

11.
Lipopolysaccharide (LPS) was isolated from a strain of Escherichia coli O157 by two different methods and used to prepare antisera in rabbits. LPS prepared by the proteolytic digestion of whole cells was identical to LPS prepared with hot-phenol, as shown by SDS-PAGE and silver staining. Antisera from rabbits receiving these LPS preparations contained high titred antibodies (>105) of the IgM class to E. coli O157 LPS.  相似文献   

12.
A verocytotoxigenic bacteriophage isolated from a strain of enterohemorrhagic Escherichia coli O157, into which a kanamycin resistance gene (aph3) had been inserted to inactivate the verocytotoxin gene (vt2), was used to infect Enterobacteriaceae strains. A number of Shigella and E. coli strains were susceptible to lysogenic infection, and a smooth E. coli isolate (O107) was also susceptible to lytic infection. The lysogenized strains included different smooth E. coli serotypes of both human and animal origin, indicating that this bacteriophage has a substantial capacity to disseminate verocytotoxin genes. A novel indirect plaque assay utilizing an E. coli recA441 mutant in which phage-infected cells can enter only the lytic cycle, enabling detection of all infective phage, was developed.  相似文献   

13.
马立克病病毒群共同性抗原P79蛋白质基因的鉴定和定位   总被引:3,自引:0,他引:3  
  相似文献   

14.
Escherichia coli K-12 varkappa971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv(+) hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his(+) (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F' factor (FS400) carrying the rfb-his region of S. typhimurium to the same two ilv(+) hybrids gave similar results. LPS extracted from two ilv(+),his(+), factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his(+) hybrids obtained from varkappa971 itself by similar HfrK9 and F'FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli varkappa971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli varkappa971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli varkappa971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his(+) recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Omega8. This suggests that, although the parental E. coli K-12 strain varkappa971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units.  相似文献   

15.
The T-even type Escherichia coli phage Ox2 recognizes the outer membrane protein OmpA as a receptor. This recognition is accomplished by the 266 residue protein 38, which is located at the free ends of the virion's long tail fibers. Host-range mutants had been isolated in three consecutive steps: Ox2----Ox2h5----Ox2h10----Ox2h12, with Ox2h12 recognizing the outer membrane protein OmpC efficiently and having lost some affinity for OmpA. Protein 38 consists, in comparison with these proteins of other phages, of two constant and one contiguous array of four hypervariable regions; the alterations leading to Ox2h12 were all found within the latter area. Starting with Ox2h12, further host-range mutants could be isolated on strains resistant to the respective phage: Ox2h12----h12h1----h12h1.1----h12h1.11----h12 h1.111. It was found that Ox2h12h1.1 (and a derivative of Ox2h10, h10h4) probably uses, instead of OmpA or OmpC, yet another outer membrane protein, designated OmpX. Ox2h12h1.11 was obtained on a strain lacking OmpA, -C and -X. This phage could not grow on a mutant of E. coli B, possessing a lipopolysaccharide (LPS) with a defective core oligosaccharide; Ox2h12h1.111 was obtained from this strain. It turned out that the latter two mutants used LPS as a receptor, most likely via its glucose residues. Selection for resistance to them in E. coli B (ompA+, ompC-, ompX-) yielded exclusively LPS mutants, and in another strain, possessing OmpA, C and X, the majority of resistant mutants were of this type. Isolated LPS inactivated the mutant phages very well and was inactive towards Ox2h12. By recombining the genes of mutant phages into the genome of parental phages it could be shown that the phenotypes were associated with gene 38. All mutant alterations (mostly single amino acid substitutions) were found within the hypervariable regions of protein 38. In particular, a substitution leading to Ox2h12h1.11 (Arg170----Ser) had occurred at the same site that led to Ox2h10 (His170----Arg), which binds to OmpC in addition to OmpA. It is concluded that not only can protein 38 gain the ability to switch from a protein to a carbohydrate as a receptor but can do so using the same domain of the polypeptide.  相似文献   

16.
The lipopolysaccharide (LPS) of 54 Australian isolates, nine isolates acquired or isolated overseas, and two reference strains of Salmonella enteritidis was studied to assess its relation to pathogenicity. LPS was extracted by proteinase K digestion of whole cells, and analysed by polyacrylamide gel electrophoresis. All isolates possessed an LPS structure identical to that of a reference strain of Salm. enteritidis phage type 4. Representative strains of the clinically prevalent phage types 4, 14 and 26, which express long chain LPS, were assessed for their pathogenicity in mice. Salmonella enteritidis phage type 4 produced a lethal infection in BALB/c mice, but not in C3H/HeJ or Quackenbush (outbred) strains. Phage types 14 and 26 did not produce an obvious infection in any mice, suggesting Australian strains of phage type 4 are more virulent than phage types 14 and 26.  相似文献   

17.
Twelve bacteriphages lysing only smooth Salmonella typhimurium strains were shown to have similar morphology--an icosahedric head to which a short, noncontractile tail carrying six spikes was attached. All phages degraded their lipopolysaccharide (LPS) receptors as shown by their ability to cleave off [14C]galactosyl-containing oligosaccharides from S. typhimurium cells labeled in their LPS. The oligosaccharides inhibited the alpha-D-galactosyl-specific Bandeiraea simplicifolia lectin agglutination of human type B erythrocytes, indicating that all 12 phage glycanases were of endorhamnosidase specificity, i.e., hydrolyzed the alpha-L-rhamnopyranosyl-(1 leads to 3)-D-galactopyranosyl linkage in the S. typhimurium O-polysaccharide chain. Two of the phages, 28B and 36, were studied in more detail. Whereas the phage 28B glycanase hydrolyzed the S. typhimurium LPS into dodeca- and octasaccharides, the phage 36 glycanase in addition cleaved off tetrasaccharides. Both phage enzymes hydrolyzed the O-polysaccharide chains of LPS from Salmonella belonging to serogroups A, B, and D1, which are built up of tetrasaccharide-repeating units identical except for the nature of the 3,6-dideoxyhexopyranosyl group (R). : FORMULA:(SEE TEXT). The phage 28B and 36 endorhamnosidases hydrolyzed also an LPS from which the 3,6-dideoxyhexosyl substituents had previously been hydrolyzed off. However, neither of the enzymes was active on LPS preparations in which the C2-C3 bond of the L-rhamnopyranosyl ring had been opened by periodate oxidation. Glucosylation at O-6 of the D-galactopyranosyl residues in the S. typhimurium LPS was found to be incompatible with hydrolysis by both enzymes. However, in an LPS glucosylated at O-4 of the D-galactopyranosyl residues, the adjacent alpha-L-rhamnopyranosyl linkages were found to be perferentially cleaved.  相似文献   

18.
Structural analysis of lipopolysaccharide (LPS) isolated from semirough, serum-sensitive Escherichia coli strain Nissle 1917 (DSM 6601, serotype O6:K5:H1) revealed that this strain's LPS contains a bisphosphorylated hexaacyl lipid A and a tetradecasaccharide consisting of one E. coli O6 antigen repeating unit attached to the R1-type core. Configuration of the GlcNAc glycosidic linkage between O-antigen oligosaccharide and core (beta) differs from that interlinking the repeating units in the E. coli O6 antigen polysaccharide (alpha). The wa(*) and wb(*) gene clusters of strain Nissle 1917, required for LPS core and O6 repeating unit biosyntheses, were subcloned and sequenced. The DNA sequence of the wa(*) determinant (11.8 kb) shows 97% identity to other R1 core type-specific wa(*) gene clusters. The DNA sequence of the wb(*) gene cluster (11 kb) exhibits no homology to known DNA sequences except manC and manB. Comparison of the genetic structures of the wb(*)(O6) (wb(*) from serotype O6) determinants of strain Nissle 1917 and of smooth and serum-resistant uropathogenic E. coli O6 strain 536 demonstrated that the putative open reading frame encoding the O-antigen polymerase Wzy of strain Nissle 1917 was truncated due to a point mutation. Complementation with a functional wzy copy of E. coli strain 536 confirmed that the semirough phenotype of strain Nissle 1917 is due to the nonfunctional wzy gene. Expression of a functional wzy gene in E. coli strain Nissle 1917 increased its ability to withstand antibacterial defense mechanisms of blood serum. These results underline the importance of LPS for serum resistance or sensitivity of E. coli.  相似文献   

19.
Salmonella enteritidis strain P278849 expressed long-chain lipopolysaccharide (LPS, termed 'smooth'), carried plasmids of 38, 34 (pDEP 44, incompatibility group N, R-type AS), 2.0 and 1 MDa, and belonged to phage type (PT) 23. Introduction of pDEP 44 into a smooth strain of Salm. enteritidis PT 4 produced a smooth strain of Salm. enteritidis of PT 24. Transfer of this plasmid into a strain of PT 8 also resulted in formation of a smooth strain of Salm. enteritidis of PT 24. Moving pDEP 44 into strains of Salm. enteritidis of PTs 7 or 7a which did not express LPS (termed 'rough') resulted in rough strains of PT 23. In contrast, transfer of this plasmid into a smooth strain of Salm. enteritidis PT 7a resulted in a smooth strain of PT 23. Introduction of pDEP 44 into strains of Salm. enteritidis of PT 13 or PT 13a did not change the phage type, whereas transferring the plasmid into strains of PT 30 caused strains to become resistant to lysis by the typing phages and therefore untypable. The possibility of strains of Salm. enteritidis of PT 8 being the progenitors of strains of Salm. enteritidis of PT 24 must now be considered when investigating the epidemiology of Salm. enteritidis of PT 24 infections in areas where Salm. enteritidis PT 8 is common.  相似文献   

20.
The effects of polymyxins (Pmx) B and E on smooth and rough Proteus mirabilis strains were investigated. P. mirabilis mutant R4/028 which completely lacked 4-amino-4-deoxy-L-arabinose was sensitive towards both polymyxins, and the other P. mirabilis strains investigated were resistant. Lipopolysaccharide (LPS) from Pmx-sensitive R4/028 strain, binds 50% more Pmx B than LPS derived from resistant P. mirabilis strains. The presence of iodoacetamide, N-ethylmaleimide and chloramphenicol rendered the Pmx-resistant P. mirabilis strains sensitive towards both polymyxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号