首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies against the alpha (Mr 67,000) and beta (Mr 60,000) subunits of wheat seedling Fru-2,6-P2-stimulated pyrophosphate-dependent 6-phosphofructo-1-phosphotransferase (PFP) were used to probe the subunit structures of several partially purified plant PFPs after tryptic digestion. Antisera to the alpha and beta subunits of wheat seedling PFP cross-reacted with the corresponding alpha and beta subunits of PFP preparations from wheat germ, potato tubers, and lettuce leaves. With the mung bean PFP, both antisera reacted with a protein band of Mr 60,000. A protein band corresponding to the Mr 67,000 alpha subunit was not detected in the mung bean PFP preparation. Tryptic digestion of wheat seedling and potato tuber PFPs resulted in the preferential cleavage of the alpha subunit. The trypsinized PFP retained most of its Fru-2,6-P2-stimulated activity but not its basal activity. The proteolyzed enzyme also exhibited a 2-fold increase in Ka for Fru-2,6-P2. Studies with the mung bean enzyme revealed that the anti-alpha immunoreactive component was more sensitive to trypsinization than the anti-beta immunoreactive component of the Mr 60,000 protein band. Thus, the Mr 60,000 protein band of the mung bean PFP appears to be heterogeneous and contains both alpha and beta-like proteins. The above observations indicate that the alpha and beta subunits of PFP are two distinct polypeptides and that alpha acts as a regulatory protein in regulating both the catalytic activity and the Fru-2,6-P2-binding affinity of the beta subunit.  相似文献   

2.
We have isolated and sequenced two overlapping cDNA fragments which could encode the complete amino acid sequence of rat testis fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. Northern blot analysis revealed that the major 2-kilobase mRNA isolated from rat testis hybridized with a cDNA fragment. A full length cDNA, which encoded a protein of 468 amino acids, was constructed and expressed in Escherichia coli. The expressed protein, purified to homogeneity, showed a Mr of 55,000 by gel electrophoresis under denaturing conditions, compared to the deduced Mr of 54,023. Fru-6-P,2-kinase:Fru-2,6-bisphosphatase with the same Mr 55,000 was also present in rat testis extract. The active enzyme was a dimer as judged by molecular sieve filtration. The expressed enzyme was bifunctional with specific activities of 90 and 22 milliunits/mg of the kinase and the phosphatase activities, respectively. Various kinetic constants of the expressed fructose 6-P,2-kinase were KmFru 6-P = 85 microM and KmATP = 270 microM, and those of fructose 2,6-bisphosphatase were KmFru 2,6-P2 = 21 microM and KiFru 6-P = 3.4 microM. The enzyme was phosphorylated by Fru-2,6[2-32P]P2 and also by protein kinase C, but not by cAMP-dependent protein kinase, which is in contrast to the liver and heart isozymes.  相似文献   

3.
Van Praag E  Tzur A  Zehavi U  Goren R 《IUBMB life》2000,49(2):149-152
Shamouti phosphofructokinase (PFP) activation depends on the presence of fructose 2,6-bisphosphate (Fru-2,6-P2) in the glycolytic reaction. The effect of activation by Fru-2,6-P2 differs considerably, however, according to the buffer (pH 8.0) in which the reaction is performed: Ka = 2.77 +/- 0.3 nM in Hepes-NaOH and 7.75 +/- 1.49 nM in Tris-HCl. The presence of chloride ions (39 mM) in the Tris-HCl buffer inhibits PFP. Indeed, when using a Hepes-NaOH buffer and then adding 39 mM NaCl, Ka = 8.12 +/- 0.52 nM. The Ki for chloride ions is approximately 21.7 mM. In the gluconeogenic reaction, Shamouti PFP generally showed a high endogenous activity. Addition of Fru-2,6-P2 did not modify the velocity and the Vmax of the enzyme; however, its presence increased the affinity of the enzyme for Fru-1,6-P2 from 200 +/- 15.6 microM in absence of Fru-2,6-P2 to 89 +/- 10.3 microM in its presence (10 microM). In the presence of chloride (39 mM), the affinity for the substrate decreased with K(m) = 150 +/- 14 microM. The calculated Ki for chloride ions equals 56.9 mM. In both the glycolytic and the gluconeogenic reactions, Vmax is not affected; therefore, the inhibition mode of chloride is competitive.  相似文献   

4.
The structures of the native fructose-1,6-bisphosphatase (Fru-1,6-Pase), from pig kidney cortex, and its fructose 2,6-bisphosphate (Fru-2,6-P2) complexes have been refined to 2.8 A resolution to R-factors of 0.194 and 0.188, respectively. The root-mean-square deviations from the standard geometry are 0.021 A and 0.016 A for the bond length, and 4.4 degrees and 3.8 degrees for the bond angle. Four sites for Fru-2,6-P2 binding per tetramer have been identified by difference Fourier techniques. The Fru-2,6-P2 site has the shape of an oval cave about 10 A deep, and with other dimensions about 18 A by 12 A. The two Fru-2,6-P2 binding caves of the dimer in the crystallographically asymmetric unit sit next to one another and open in opposite directions. These two binding sites mutually exchange their Arg243 side-chains, indicating the potential for communication between the two sites. The beta, D-fructose 2,6-bisphosphate has been built into the density and refined well. The oxygen atoms of the 6-phosphate group of Fru-2,6-P2 interact with Arg243 from the adjacent monomer and the residues of Lys274, Asn212, Tyr264, Tyr215 and Tyr244 in the same monomer. The sugar ring primarily contacts with the backbone atoms from Gly246 to Met248, as well as the side-chain atoms, Asp121, Glu280 and Lys274. The 2-phosphate group interacts with the side-chain atoms of Ser124 and Lys274. A negatively charged pocket near the 2-phosphate group includes Asp118, Asp121 and Glu280, as well as Glu97 and Glu98. The 2-phosphate group showed a disordered binding perhaps because of the disturbance from the negatively charged pocket. In addition, Asn125 and Lys269 are located within a 5 A radius of Fru-2,6-P2. We argue that Fru-2,6-P2 binds to the active site of the enzyme on the basis of the following observations: (1) the structure similarity between Fru-2,6-P2 and the substrate; (2) sequence conservation of the residues directly interacting with Fru-2,6-P2 or located at the negatively charged pocket; (3) a divalent metal site next to the 2-phosphate group of Fru-2,6-P2; and (4) identification of some active site residues in our structure, e.g. tyrosine and Lys274, consistent with the results of the ultraviolet spectra and the chemical modification. The structures are described in detail including interactions of interchain surfaces, and the chemically modifiable residues are discussed on the basis of the refined structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase appears to be the only enzyme catalyzing the formation and hydrolysis of Fru-2,6-P2. The enzyme as we isolate it, contains a trace of tightly bound Fru-6-P. In this condition, it exhibited an ATPase activity comparable to its kinase activity. Inorganic phosphate stimulated all of its activities, by increasing the affinity for all substrates and increasing the Vmax of ATP and Fru-2,6-P2 hydrolysis. The enzyme catalyzed ADP/ATP and Fru-6-P/Fru-2,6-P2 exchanges at rates comparable to net reaction rates. It was phosphorylated by both [gamma-32P]ATP and [2-32P] Fru-2,6-P2, and the label from either donor was chased by either unlabeled donor, showing that the bound phosphate is hydrolyzed if not transferred to an acceptor ligand. The rate of labeling of the enzyme by [2-32P]Fru-2,6-P2 was 2 orders of magnitude greater than the maximal velocity of the bisphosphatase and therefore sufficiently fast to be a step in the hydrolysis. Both inorganic phosphate and Fru-6-P increased the rate and steady state of enzyme phosphorylation by ATP. Fru-2,6-P2 inhibited the ATPase and kinase reactions and Fru-6-P inhibited the Fru-2,6 bisphosphatase reaction while ATP and ADP had no effect. Removal of the trace of Fru-6-P by Glu-6-P isomerase and Glu-6-P dehydrogenase reduced enzyme phosphorylation by ATP to very low levels, greatly inhibited the ATPase, and rendered it insensitive to Pi, but did not affect ADP/ATP exchange. (alpha + beta)Methylfructofuranoside-6-P did not increase the rate or steady state labeling by ATP. These results suggest that labeling of the enzyme by ATP involved the production of [2-32P]Fru-2,6-P2 from the trace Fru-6-P. The 6-phosphofructo-2-kinase, fructose 2,6-bisphosphatase, and ATP/ADP exchange were all inhibited by diethylpyrocarbonate, suggesting the involvement of histidine residues in all three reactions. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a Fru-2,6 bisphosphatase site which is readily phosphorylated by Fru-2,6-P2.  相似文献   

6.
Y H Wang  J N Shi 《FEBS letters》1999,459(3):448-452
Pyrophosphate-dependent 6-phosphofructo-1-phosphotransferase (PFP) consists of alpha (regulatory) and beta (catalytic) subunits. The alpha-subunit was previously reported to be much more susceptible to tryptic digestion than the beta-subunit. In this study, ligand-induced protection of PFP subunits against proteolysis by subtilisin was investigated in vitro and the data obtained demonstrated that fructose 1,6-bisphosphate (Fru-1,6-P(2)), while exerting negligible effect on the beta-subunit, remarkably protected the alpha-subunit against proteolytic degradation. Western blot analysis revealed a good correlation between the Fru-1,6-P(2) concentration and the degree of corresponding protection on the alpha-subunit against proteolysis. In contrast, none of other examined ligands including fructose 2,6-bisphosphate, fructose 6-phosphate and pyrophosphate had such protection on the alpha-subunit. This finding (1) indicates that the stability of the alpha-subunit can be selectively increased by Fru-1,6-P(2), and (2) suggests that Fru-1,6-P(2) is likely a special effector of the alpha-subunit.  相似文献   

7.
G D Reinhart 《Biochemistry》1985,24(25):7166-7172
The relationship between pH and the MgATP inhibition of rat liver phosphofructokinase has been quantiatively evaluated by utilization of a thermodynamic linked-function approach. This approach obviates the need to presuppose discrete inhibited and active states of the enzyme. The behavior of the apparent Michaelis constant for fructose 6-phosphate (Fru-6-P) over a 100-fold concentration range of MgATP conforms to the behavior predicted by the linked-function theory in that, a high concentrations of MgATP, saturation of the inhibitory effect is achieved, a result not predicted by a mutually exclusive two-state model. This behavior is described by the relationship Ka = Ka0[(Kix0 + [X])]/(Kix0 + Q[X])], where Ka is the apparent Michaelis constant for Fru-6-P, Ka0 is the Michaelis constant for Fru-6-P in the absence of MgATP, Kix0 is the dissociation constant of MgATP in the absence of Fru-6-P, and Q is the coupling term that quantitatively describes the finite degree of antagonism between MgATP and Fru-6-P. The free energy of interaction between MgATP and Fru-6-P, obtained from Q, is 1.9 kcal/mol at 25 degrees C. Ka0 and Kix0 are 0.17 and 0.3 mM, respectively. The influence of pH on these three parameters was then systematically investigated, and only Ka0 increased substantially with decreasing pH. Consequently, it is concluded that decreasing the pH does not increase the apparent Ka for Fru-6-P by augmenting the binding or inhibition by MgATP to a significant extent but rather by directly affecting the intrinsic affinity of the enzyme for Fru-6-P. The pK for this effect is 8.1.  相似文献   

8.
Ribose 1,5-bisphosphate (Rib-1,5-P2), a newly discovered activator of rat brain phosphofructokinase, forms rapidly during the initiation of glycolytic flux and disappears within 20 s (Ogushi, S., Lawson, J.W. R., Dobson, G.P., Veech, R.L., and Uyeda, K. (1990) J. Biol. Chem. 265, 10943-10949). Activation of various mammalian phosphofructokinases and plant pyrophosphate-dependent phosphofructokinases by Rib-1,5-P2 was investigated. The order of decreasing potency for activation of rabbit muscle phosphofructokinase was: fructose (Fru) 2,6-P2, Rib-1,5-P2, Fru-1,6-P2, Glc-1,6-P2, phosphoribosylpyrophosphate, ribulose-1,5-P2, sedoheptulose-1,7-P2, and myoinositol-1,4-P2. The K0.5 values for activation by Rib-1,5-P2 of rat brain, rat liver, and rabbit muscle phosphofructokinases and potato and mung bean pyrophosphate-dependent phosphofructokinases were 64 nM, 230 nM, 82 nM, 710 nM, and 80 microM, respectively. The corresponding K0.5 values for Fru-2,6-P2 were 9, 8.6, 10, 7, and 65 nM, respectively. Rib-1,5-P2 was a competitive inhibitor of Fru-2,6-P2, binding to the muscle enzyme with Ki of 26 microM. Citrate increased the K0.5 for Rib-1,5-P2 without affecting the maximum activation, and AMP lowered the K0.5 for Rib-1,5-P2 without affecting the maximum activation. These effects of citrate and AMP were similar to those observed with Fru-2,6-P2 and different from those with Fru-1,6-P2. Rib-1,5-P2 is the second most potent activator of phosphofructokinase thus far discovered. The Rib-1,5-P2-activated conformation of the enzyme seems to be similar to that induced by Fru-2,6-P2, but different from that induced by Fru-1,6-P2.  相似文献   

9.
The relationship between fructose 2,6-bisphosphate (Fru-2,6-BP) activation and MgATP inhibition of rat liver phosphofructokinase has been comprehensively evaluated at pH 7. When either ligand is varied at a fixed concentration of the other, its influence on the concentration of fructose 6-phosphate (Fru-6-P) required to produce half-maximal velocity, Ka, is usually well described by the same simple, single-modifier linkage expression that described the actions of these ligands at pH 9. However, the effects of both ligands together cannot be described by the same overall linkage relationship that described their actions at pH 9. Specifically, despite an overall antagonistic relationship between the binding of MgATP and that of Fru-2,6-BP, very low concentrations of Fru-2,6-BP appear to facilitate the binding of MgATP to an appreciable degree. Also, MgATP at high concentration appears to inhibit the binding of Fru-2,6-BP to a significantly greater extent than its actions at lower concentration would predict. These additional features of MgATP-Fru-2,6-BP interaction have been incorporated into an overall linkage expression describing the actions of both MgATP and Fru-2,6-BP on Ka for Fru-6-P. The best fit parameters predict the data to within an average standard error of +/- 21%.  相似文献   

10.
Pyrphosphate-dependent phosphofructokinase (PFP) was purified to electrophoretic homogeneity from illuminated pineapple (Ananas comosus) leaves. The purified enzyme consists of a single subunit of 61.5 kD that is immunologically related to the potato tuber PFP [beta] subunit. The native form of PFP likely consists of a homodimer of 97.2 kD, as determined by gel filtration. PFP's glycolytic activity was strongly dependent on pH, displaying a maximum at pH 7.7 to 7.9. Gluconeogenic activity was relatively constant between pH 6.7 and 8.7. Activation by Fru-2,6-bisphosphate (Fru-2,6-P2) was dependent on assay pH. In the glycolytic direction, it activated about 10-fold at pH 6.7, but only 2-fold at pH 7.7. The gluconeogenic reaction was only weakly affected by Fru-2,6-P2. The true substrates for the PFP forward and reverse reactions were Fru-6-phosphate and Mg-pyrophosphate, and Fru-1,6-P2, orthophosphate, and Mg2+, respectively. The results suggest that pineapple PFP displays regulatory properties consistent with a pH-based regulation of its glycolytic activity, in which a decrease in cytosolic pH caused by nocturnal acidification during Crassulacean acid metabolism, which could curtail its activity, is compensated by a parallel increase in its sensitivity to Fru-2,6-P2. It is also evident that the [beta] subunit alone is sufficient to confer PFP with a high catalytic rate and the regulatory properties associated with activation by Fru-2,6-P2.  相似文献   

11.
1. Phosphofructokinase (PFK) was purified from bovine parotid gland to 750-fold with the specific activity of 67.5 units/mg protein by Cibacron Blue F3GA affinity chromatography, and TSK DEAE-5PW ion-exchange and TSK G4000SW size exclusion chromatographies on HPLC. 2. On gel-filtration, molecular weight of the native PFK was estimated to 400,000. 3. PFK was a heterotetramer composed of three kinds of subunit with molecular weights of 92,000 (C-type), 88,000 (M-type) and 86,000 (L-type), by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Densitometrically, relative amounts of C-, M- and L-type subunit were 1:1:2. 4. Under the physiological conditions of fructose 6-phosphate (Fru-6-P) and ATP concentrations and pH, PFK activity was suppressed and hardly detectable. 5. Fru-6-P relieved PFK from the ATP inhibition. 6. Fructose 2,6-bisphosphate (Fru-2,6-P2) and AMP activated PFK with a reduction of S0.5 for Fru-6-P and subunit cooperativity. Fru-2,6-P2 was more effective than AMP.  相似文献   

12.
The regulation of the Fru-6-P/Fru-2,6-P2 cycle by the cooperation of allosteric and covalent mechanisms was investigated in a reconstituted enzyme system under in vitro conditions. Phosphorylation of the bifunctional enzyme exerts a much stronger effect than sn-glycerol 3-phosphate in lowering the quasi-stationary concentration of fructose 2,6-bisphosphate and in increasing the critical concentration of the fructose phosphates, respectively. However, sn-glycerol 3-phosphate is able to strongly amplify the decrease of the quasi-stationary concentration of fructose 2,6-bisphosphate due to phosphorylation. The experiments can be described by a mathematical model involving rate equations for the dephosphorylated and the phosphorylated PFD-2 and FBPase-2. The results are compared with data from the literature obtained under in vivo conditions.  相似文献   

13.
Previously, we reported that inorganic phosphate (Pi) deprivation of Brassica nigra suspension cells or seedlings leads to a progressive increase in the alpha: beta-subunit ratio of the inorganic pyrophosphate (PPi)-dependent phosphofructokinase (PFP) and that this coincides with a marked enhancement in the enzyme's activity and sensitivity to its allosteric activator, fructose-2,6-bisphosphate (Fru-2,6-P2). To further investigate the effect of Pi nutrition on B. nigra PFP, the enzyme was purified and characterized from Pi-starved B. nigra suspension cell cultures. Polyacrylamide gel electrophoresis, immunoblot, and gel-filtration analyses of the final preparation indicated that this enzyme exists as a heterooctamer of approximately 500 kD and is composed of a 1:1 ratio of immunologically distinct alpha (66 kD) and beta (60 kD) subunits. The enzyme's alpha subunit was susceptible to partial proteolysis during purification, but this was prevented by the presence of chymostatin and leupeptin. In the presence and absence of 5 microM Fru-2,6-P2, the forward activity of PFP displayed pH optima of pH 6.8 and 7.6, respectively. Maximal activation of the forward and reverse reactions by Fru-2,6-P2 occurred at pH 6.8. The potent inhibition of the forward activity by Pi (concentration of inhibitor producing 50% inhibition of enzyme activity [I50] = 1.3 mM) was attributed to a marked Pi-dependent reduction in Fru-2,6-P2 binding. The reverse reaction was substrate-inhibited by Pi (I50 = 13 mM) and product-inhibited by PPi (I50 = 0.9 mM). The kinetic data are consistent with the hypothesis that PFP may function to bypass the ATP-dependent PFP in Pi-starved B. nigra. The importance of the Pi nutritional status to the regulation and predicted physiological function of PFP is emphasized.  相似文献   

14.
1. The fructose-2,6-bisphosphate (Fru-2,6-P2) content of mesenteric lymph nodes was measured in rats. 2. The effects of Fru-2,6-P2 on the activity of 6-phosphofructo-1-kinase (PFK-1) from rat mesenteric lymph nodes were also studied. 3. The affinity of the enzyme for fructose-6-phosphate was increased by Fru-2,6-P2 whereas the inhibition of the enzyme with high concentrations of ATP was released by Fru-2,6-P2. 4. The activity of lymphocyte PFK-1 was highly stimulated in a simultaneous presence of low concentrations of AMP and Fru-2,6-P2. 5. These results show that rat lymphocyte PFK-1 is highly regulated with Fru-2,6-P2 which means that glycolysis in rat lymphocytes is controlled by Fru-2,6-P2.  相似文献   

15.
Fructose-1,6-bisphosphatase (FBPase) operates at a control point in mammalian gluconeogenesis, being inhibited synergistically by fructose 2,6-bisphosphate (Fru-2,6-P(2)) and AMP. AMP and Fru-2,6-P(2) bind to allosteric and active sites, respectively, but the mechanism responsible for AMP/Fru-2,6-P(2) synergy is unclear. Demonstrated here for the first time is a global conformational change in porcine FBPase induced by Fru-2,6-P(2) in the absence of AMP. The Fru-2,6-P(2) complex exhibits a subunit pair rotation of 13 degrees from the R-state (compared with the 15 degrees rotation of the T-state AMP complex) with active site loops in the disengaged conformation. A three-state thermodynamic model in which Fru-2,6-P(2) drives a conformational change to a T-like intermediate state can account for AMP/Fru-2,6-P(2) synergism in mammalian FBPases. AMP and Fru-2,6-P(2) are not synergistic inhibitors of the Type I FBPase from Escherichia coli, and consistent with that model, the complex of E. coli FBPase with Fru-2,6-P(2) remains in the R-state with dynamic loops in the engaged conformation. Evidently in porcine FBPase, the actions of AMP at the allosteric site and Fru-2,6-P(2) at the active site displace engaged dynamic loops by distinct mechanisms, resulting in similar quaternary end-states. Conceivably, Type I FBPases from all eukaryotes may undergo similar global conformational changes in response to Fru-2,6-P(2) ligation.  相似文献   

16.
This study examines the influence of the growth promoter, lepidimoic acid, on the level of an important cytosolic signal metabolite, fructose 2,6-bisphosphate (Fru-2,6-P2), which can activate pyrophosphatedependent:phosphofructokinase (PFP, EC 2.7.1.90), and on glycolytic metabolism in Amaranthus caudatus seedlings. Fru-2,6-P2 concentrations were respectively increased by approximately 2-, 3- and 4-fold when the seedlings were treated with 0.3, 3 and 30 mM lepidimoic acid. Exogenous lepidimoic acid also affected levels of glycolytic intermediates in the seedlings. The increase in fructose 1,6-bisphosphate and decreases in fructose 6-phosphate and glucose 6-phosphate were found in response to the elevated concentration of lepidimoic acid. These results suggest that lepidimoic acid may affect glycolytic metabolism in the Amaranthus seedlings by increasing the activity of PFP due to increasing level of Fru-2,6-P2.  相似文献   

17.
Fructose-6-phosphate,2-kinase:fructose-2,6-bis-phosphatase from rat skeletal muscle has been purified to homogeneity, and its structure and kinetic properties have been determined. The Mr of the native enzyme was 100,000 and the subunit Mr was 54,000. The apparent Km values of fructose-6-P,2-kinase for Fru-6-P and ATP were 56 and 48 microM, respectively. The apparent Km value for Fru-2,6-P2 of fructose-2,6-bis-phosphatase was 0.4 microM, and the Ki for Fru-6-P was 12.5 microM. The enzyme was bifunctional, and the phosphatase activity was 2.5 times higher than the kinase activity. The enzyme was not phosphorylated by cAMP-dependent protein kinase. The amino acid composition of the skeletal muscle enzyme was similar to that of the rat liver enzyme, and the carboxyl terminus sequence (His-Tyr) was the same as that of the liver enzyme. The tryptic peptides generated from the liver and skeletal muscle enzymes were identical except for two peptides. A peptide corresponding to nucleotides 14-28 of the rat liver enzyme was not detected in the skeletal muscle enzyme. A peptide whose amino acid sequence was Thr-Ala-Ser-Ile-Pro-Gln-Phe-Thr-Asn-Ser-Pro-Thr-Met-Val-Ile-Met-Val-Gly-Leu-Pro - Ala-Arg was also isolated. This peptide was the same as that of rat liver enzyme (nucleotides 31-52) containing the phosphorylation site except in the muscle enzyme two amino terminus amino acids, Gly-Ser(P), have been altered to Thr-Ala. Thus, the rat skeletal muscle enzyme is very similar in structure to the rat liver enzyme except for the lack of possibly one peptide and the lack of a phosphorylation site by the substitution of the target Ser with Ala.  相似文献   

18.
A cDNA coding for 378 amino acids from the C-terminus of the human liver bifunctional enzyme, Fructose-6-phosphate,2-kinase:Fructose-2,6-bisphosphatase was isolated, sequenced, and expressed in E. coli K38. The expressed protein, identified by specific immunoassay, showed Fru 2,6-bisphosphatase activity but no Fru 6-P,2-kinase activity, demonstrating directly that the Fru 2,6-bisphosphatase activity resides in the C-terminal region. The Km for Fru 2,6-P2 was 4.3 microM. Fru 6-P was a noncompetitive inhibitor (Ki = 2.9 microM), and formed a phosphorylated intermediate when incubated with Fru 2,6[2-32P]P2. The subunit Mr of the enzyme was 36,600, and the active enzyme showed Mr = 37,000 by gel filtration.  相似文献   

19.
1H and 31P nuclear magnetic resonance was used to investigate the interaction of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) with bovine liver fructose-1,6-bisphosphatase. Mn2+ bound to fructose-1,6-bisphosphatase was used as a paramagnetic probe to map the active and AMP allosteric sites of fructose-1,6-bisphosphatase. Distances between enzyme-bound Mn2+ and the phosphorus atoms at C-6 of fructose-6-P and alpha-methyl-D-fructofuranoside 1,6-bisphosphate were identical, and the enzyme-Mn to phosphorus distance determined for the C-6 phosphorus atom of Fru-2,6-P2 was very similar to these values. Likewise, the enzyme-Mn to phosphorus distances for Pi, the C-1 phosphorus atom of alpha-methyl-D-fructofuranoside 1,6-bisphosphate, and the C-2 phosphorus atom of Fru-2,6-P2 agreed within 0.5 A. The distance between enzyme-bound Mn2+ and the phosphorus atom of AMP was significantly shorter than the distances obtained for any of the aforementioned ligands, but the presence of Fru-2,6-P2 caused the enzyme-Mn to phosphorus distance for AMP to lengthen markedly. NMR line broadening of AMP protons was studied at various temperatures. The dissociation rate constant was found to be greater than 20 s-1. It was concluded that Fru-2,6-P2 strongly affects the interaction of AMP with fructose-1,6-bisphosphatase and that the sugar most likely acts at the active site of the enzyme.  相似文献   

20.
In order to determine the role of fructose (Fru) 2,6-P2 in stimulation of phosphofructokinase in ischemic liver, tissue contents of Fru-2,6-P2, hexose-Ps, adenine nucleotides, and Fru-6-P,2-kinase:Fru-2,6-bisphosphatase were investigated during the first few minutes of ischemia. The Fru-2,6-P2 concentration in the liver changed in an oscillatory manner. Within 7 s after the initiation of ischemia, Fru-2,6-P2 increased from 6 to 21 nmol/g liver and decreased to 5 nmol/g liver within 30 s. Subsequently, it reached the maximum value at 50, 80, and 100 s and decreased to the basal concentration at 60, 90, and 120 s. Oscillatory patterns were also observed with Glc-6-P and Fru-6-P, but the ATP/ADP ratio decreased monotonically. Determination of Fru-6-P,2-kinase activity and the phosphorylation states of Fru-6-P,2-kinase:Fru-2,6-bisphosphatase demonstrated that at 7 and 50 s, where Fru-2,6-P2 was the highest, the enzyme was activated and mostly in a dephosphorylated form. On the other hand, at 0, 30, and 300 s, the enzyme was predominantly in the phosphorylated form. The concentration of cAMP in the liver also changed in an oscillatory manner between 0.5 to 1.3 nmol/g with varying frequency of 10 to 40 s. These results indicated that: (a) Fru-2,6-P2 was important in rapid activation of phosphofructokinase in the first few seconds and up to 2-3 min, and (b) the oscillation of Fru-2,6-P2 concentration was the result of activation and inhibition of Fru-6-P,2-kinase:Fru-2,6-bisphosphatase, which was caused by changes in the phosphorylation state of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号