首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theories and empirical evidence suggest that random dispersal of organisms promotes species coexistence in spatially structured environments. However, directed dispersal, where movement is adjusted with fitness-related cues, is less explored in studies of dispersal-mediated coexistence. Here, we present a metacommunity model of two consumers exhibiting directed dispersal and competing for a single resource. Our results indicated that directed dispersal promotes coexistence through two distinct mechanisms, depending on the adaptiveness of dispersal. Maladaptive directed dispersal may promote coexistence similar to random dispersal. More importantly, directed dispersal is adaptive when dispersers track patches of increased resources in fluctuating environments. Coexistence is promoted under increased adaptive dispersal ability of the inferior competitor relative to the superior competitor. This newly described dispersal-mediated coexistence mechanism is likely favored by natural selection under the trade-off between competitive and adaptive dispersal abilities.  相似文献   

2.
Although there is a large body of theory on spatial competitive coexistence, very little of it involves comparative analyses of alternative mechanisms. We thus have limited knowledge of the conditions under which multiple spatial mechanisms can operate or of emergent properties arising from interactions between mechanisms. Here we present a mathematical framework that allows for comparative analysis of spatial coexistence mechanisms. The basis for comparison is mechanisms operating in spatially homogeneous competitive environments (e.g., life-history trade-offs) versus mechanisms operating in spatially heterogeneous competitive environments (e.g., source-sink dynamics). Our comparative approach leads to several new insights about spatial coexistence. First, we show that spatial variation in the expression of a life-history trade-off leads to a unique regional pattern that cannot be predicted by considering trade-offs or source-sink dynamics alone. This result represents an instance where spatial heterogeneity constrains rather than promotes coexistence, and it illustrates the kind of counterintuitive emergent properties that arise due to interactions between different classes of mechanisms. Second, we clarify the role of dispersal mortality in spatial coexistence. Previous studies have shown that coexistence can be constrained or facilitated by dispersal mortality. Our broader analysis distinguishes situations where dispersal mortality is not necessary for coexistence from those where such mortality is essential for coexistence because it preserves spatial variation in the strength of competition. These results form the basis for two important future directions: evolution of life-history traits in spatially heterogeneous environments and elucidation of the cause and effect relationship(s) between biodiversity and ecosystem functioning.  相似文献   

3.
1. The harlequin bug, a herbivore on bladderpod, is attacked by two specialist egg parasitoids Trissolcus murgantiae and Ooencyrtus johnsonii . Ooencyrtus can out-compete Trissolcus in the laboratory, but coexistence is the norm in field populations. Despite the heavy mortality inflicted by the two parasitoids, the host–parasitoid interaction is persistent in all sites that have been studied in southern California.
2. I manipulated inter-patch distances in a field experiment to determine whether spatial processes drive parasitoid coexistence and/or host–parasitoid dynamics. I first tested the hypothesis that the parasitoids coexist via a dispersal–competition trade-off. Both parasitoid species took significantly longer to colonize isolated patches than well-connected patches, suggesting that they have comparable dispersal abilities. Ooencyrtus did not exclude Trissolcus even when inter-patch distances were reduced to 25–30% of those observed in natural populations. These data suggest that parasitoid coexistence can occur in the absence of a dispersal advantage to the inferior competitor.
3. Since the treatments with isolated vs. well-connected patches did not differ in parasitoid composition, I next asked whether isolation would destabilize, or drive extinct, the host–multiparasitoid interaction. No local extinctions of bugs or parasitoids were observed during the 18-month study period. Bug populations in the isolated patches were no more variable than those in the well-connected patches. In fact, temporal variability in the experimentally isolated patches was comparable to that observed in highly isolated natural populations.
4. These data argue against a strong effect of spatial processes on host–parasitoid dynamics. Local processes may mediate both parasitoid coexistence as well as the host–parasitoid interaction.  相似文献   

4.
1. I investigated the effects of dispersal on communities of keystone predators and prey. I obtained two key results. 2. First, a strong trade-off between competitive ability and predator susceptibility allows consumer coexistence over a large resource productivity range, but it also lowers the predator-susceptible superior competitor's abundance and increases its risk of extinction. Thus, unexpectedly, dispersal plays a more important role in coexistence when predator-mediated coexistence is strong rather than weak. The interplay between the trade-off, small population sizes resulting from transient oscillations, and dispersal leads to qualitatively different species distributions depending on the relative mobilities of the consumers and predator. These differences yield comparative predictions that can be tested with data on trade-off strength, dispersal rates, and species distributions across productivity gradients. 3. Second, there is an asymmetry between species in their dispersal effects: the predator-resistant inferior competitor's dispersal has a large effect, but the predator-susceptible superior competitor's dispersal has no effect, on coexistence and species' distributions. The inferior competitor's dispersal also mediates the predator's dispersal effects: the predator's dispersal has no effect when the inferior competitor is immobile, and a large effect when it is mobile. The net outcome of the direct and indirect effects of the inferior competitor's dispersal is a qualitative change in the species' distributions from interspecific segregation to interspecific aggregation. 4. The important point is that differences between species in how they balance resource acquisition and predator avoidance can lead to unexpected differences in their dispersal effects. While consumer coexistence in the absence of dispersal is driven largely by the top predator, consumer coexistence in the presence of dispersal is driven largely by the predator-resistant inferior competitor.  相似文献   

5.
Sepulveda AJ  Lowe WH 《Oecologia》2011,166(4):1043-1054
Theory suggests that source–sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture–mark–recapture, genetic methods, and stable isotopes to test whether source–sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae—apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence.  相似文献   

6.
It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence.  相似文献   

7.
Dynamics of populations depend on demographic parameters which may change during evolution. In simple ecological models given by one-dimensional difference equations, the evolution of demographic parameters generally leads to equilibrium population dynamics. Here we show that this is not true in spatially structured ecological models. Using a multi-patch metapopulation model, we study the evolutionary dynamics of phenotypes that differ both in their response to local crowding, i.e. in their competitive behaviour within a habitat, and in their rate of dispersal between habitats. Our simulation results show that evolution can favour phenotypes that have the intrinsic potential for very complex dynamics provided that the environment is spatially structured and temporally variable. These phenotypes owe their evolutionary persistence to their large dispersal rates. They typically coexist with phenotypes that have low dispersal rates and that exhibit equilibrium dynamics when alone. This coexistence is brought about through the phenomenon of evolutionary branching, during which an initially uniform population splits into the two phenotypic classes.  相似文献   

8.
Spatially heterogeneous environments can theoretically promote more stable coexistence of hosts and parasites by reducing the risk of parasite attack either through providing permanent spatial refuges or through providing ephemeral refuges by reducing dispersal. In experimental populations of Pseudomonas aeruginosa and the bacteriophage PP7, spatial heterogeneity promoted stable coexistence of host and parasite, while coexistence was significantly less stable in the homogeneous environment. Phage populations were found to be persisting on subpopulations of sensitive bacteria. Transferring populations to fresh microcosms every 24 h prevented the development of permanent spatial refuges. However, the lower dispersal rates in the heterogeneous environment were found to reduce parasite transmission thereby creating ephemeral refuges from phage attack. These results suggest that spatial heterogeneity can stabilize an otherwise unstable host-parasite interaction even in the absence of permanent spatial refuges.  相似文献   

9.
Competition is one of the main drivers of dispersal, which can be an important mechanism to achieve permanent or temporal coexistence of multiple species. This coexistence can be achieved by a dispersal‐competition tradeoff, spatial store effects or neutral dynamics. Here we test the effect of inter‐ and intraspecific competition on dispersal of four species of the marine nematode species complex Litoditis marina. A previous study in closed microcosms without a possibility for dispersal had demonstrated pronounced interspecific competition, leading to the exclusion of one species. We now investigated whether 1) the dispersal is affected by interspecific interactions, by intraspecific competition (density) or by food availability, 2) the dispersal dynamics influence assemblage composition and can lead to co‐occurrence of the species, and 3) the abiotic environment (here salinity) can affect these dynamics. We show that density is the main driver for dispersal in two of the four species. Dispersal of a third species always started at the same time irrespective of density, whereas in the fourth species interspecific interactions accelerated dispersal. Remarkably, this fourth species was not a strong competitor, suggesting that a dispersal–competition tradeoff does not explain the observed coexistence. Salinity did not alter the timing of dispersal when interspecific interactions were present but did affect assemblage composition. Consequently, spatial store effects may influence coexistence. All four species co‐occurred in fairly stable abundances throughout the present experiment indicating the importance of species specific dispersal strategies for coexistence. Co‐occurrence can be facilitated because competition is postponed or avoided by dispersal. Neutral dynamics also played a role as intra‐ and interspecific competition were of similar importance in three of the four species. We conclude that dispersal is a driver of the coexistence of closely related nematode species, and that population density and interspecific interactions shape these dynamics.  相似文献   

10.
Two competing consumer species may coexist using a single homogeneous resource when the more efficient consumer--the one having the lowest equilibrium resource density--has a more nonlinear functional response that generates consumer-resource cycles. We extend this model of nonequilibrium coexistence, as proposed by Armstrong and McGehee, by putting the interaction into a spatial context using two frameworks: a spatially explicit individual-based model and a spatially implicit metapopulation model. We find that Armstrong and McGehee's mechanism of coexistence can operate in a spatial context. However, individual-based simulations suggest that decreased dispersal restricts coexistence in most cases, whereas differential equation models of metapopulations suggest that a low rate of dispersal between subpopulations often increases the coexistence region. This difference arises in part because of two potentially opposing effects on coexistence due to the asynchrony in the temporal dynamics at different locations. Asynchrony implies that the less efficient species is more likely to be favored in some spatial locations at any given time, which broadens the conditions for coexistence. On the other hand, asynchrony and dispersal can also reduce the amplitude of local population cycles, which restricts coexistence. The relative influence of these two effects depends on details of the population dynamics and the representation of space. Our results also demonstrate that coexistence via the Armstrong-McGehee mechanism can occur even when there is little variation in the global densities of either the consumers or the resource, suggesting that empirical studies of the mechanisms should measure densities on several spatial scales.  相似文献   

11.
A great deal is known about the influence of dispersal on species that interact via competition or predation, but very little is known about the influence of dispersal on species that interact via both competition and predation. Here, I investigate the influence of dispersal on the coexistence and abundance-productivity relationships of species that engage in intraguild predation (IGP: competing species that prey on each other). I report two key findings. First, dispersal enhances coexistence when a trade-off between resource competition and IGP is strong and/or when the Intraguild Prey has an overall advantage, and impedes coexistence when the trade-off is weak and/or when the Intraguild Predator has an overall advantage. Second, the Intraguild Prey's abundance-productivity relationship depends crucially on the dispersal rate of the Intraguild Predator, but the Intraguild Predator's abundance-productivity relationship is unaffected by its own dispersal rate or that of the Intraguild Prey. This difference arises because the two species engage in both a competitive interaction as well as an antagonistic (predator-prey) interaction. The Intraguild Prey, being the intermediate consumer, has to balance the conflicting demands of resource acquisition and predator avoidance, while the Intraguild Predator has to contend only with resource acquisition. Thus, the Intraguild Predator's abundance increases monotonically with resource productivity regardless of either species' dispersal rate, while the Intraguild Prey's abundance-productivity relationship can increase, decrease, or become hump-shaped with increasing productivity depending on the Intraguild Predator's dispersal rate. The important implication is that a species' trophic position determines the effectiveness of dispersal in sampling spatial environmental heterogeneity. The dispersal behavior of a top predator is likely to have a stronger effect on coexistence and spatial patterns of abundance than the dispersal behavior of an intermediate consumer.  相似文献   

12.
Patch occupancy theory predicts that a trade-off between competition and dispersal should lead to regional coexistence of competing species. Empirical investigations, however, find local coexistence of superior and inferior competitors, an outcome that cannot be explained within the patch occupancy framework because of the decoupling of local and spatial dynamics. We develop two-patch metapopulation models that explicitly consider the interaction between competition and dispersal. We show that a dispersal-competition trade-off can lead to local coexistence provided the inferior competitor is superior at colonizing empty patches as well as immigrating among occupied patches. Immigration from patches that the superior competitor cannot colonize rescues the inferior competitor from extinction in patches that both species colonize. Too much immigration, however, can be detrimental to coexistence. When competitive asymmetry between species is high, local coexistence is possible only if the dispersal rate of the inferior competitor occurs below a critical threshold. If competing species have comparable colonization abilities and the environment is otherwise spatially homogeneous, a superior ability to immigrate among occupied patches cannot prevent exclusion of the inferior competitor. If, however, biotic or abiotic factors create spatial heterogeneity in competitive rankings across the landscape, local coexistence can occur even in the absence of a dispersal-competition trade-off. In fact, coexistence requires that the dispersal rate of the overall inferior competitor not exceed a critical threshold. Explicit consideration of how dispersal modifies local competitive interactions shifts the focus from the patch occupancy approach with its emphasis on extinction-colonization dynamics to the realm of source-sink dynamics. The key to coexistence in this framework is spatial variance in fitness. Unlike in the patch occupancy framework, high rates of dispersal can undermine coexistence, and hence diversity, by reducing spatial variance in fitness.  相似文献   

13.
Dispersal of organisms may play an essential role in the coexistence of species. Recent studies of the evolution of dispersal in temporally varying environments suggest that clones differing in dispersal rates can coexist indefinitely. In this work, we explore the mechanism permitting such coexistence for a model of dispersal in a patchy environment, where temporal heterogeneity arises from endogenous chaotic dynamics. We show that coexistence arises from an extreme type of intermittent behavior, namely the phenomenon known as on-off intermittency. In effect, coexistence arises because of an alternation between synchronized and de-synchronized dynamical behaviors. Our analysis of the dynamical mechanism for on-off intermittency lends strong credence to the proposition that chaotic synchronism may be a general feature of species coexistence, where competing species differ only in dispersal rate.  相似文献   

14.
Dispersal (i.e. movement from a natal or breeding site to another breeding site) is a central process in ecology and evolution as it affects the eco‐evolutionary dynamics of spatially structured populations. Dispersal evolution is regulated by the balance between costs and benefits, which is influenced by the individual phenotype (i.e. phenotype‐dependent dispersal) and environmental factors (i.e. condition‐dependent dispersal). Even though these processes have been extensively studied in species with simple life cycles, our knowledge about these mechanisms in organisms displaying complex life cycles remains fragmentary. In fact, little is specifically known about how the interplay between individual and environmental factors may lead to alternative dispersal strategies that, in turn, lead to the coexistence of contrasted site fidelity phenotypes. In this paper, we examined breeding dispersal in a pond‐breeding amphibian, the great crested newt Triturus cristatus, within usual walking distances for a newt. We took advantage of recent developments in multi‐event capture–recapture models and used capture–recapture data (946 newts marked) collected in a spatially structured population occupying a large pond network (73 ponds). We showed a high rate of breeding site infidelity (i.e. pond use) and the coexistence of two dispersal phenotypes, namely, a highly pond faithful phenotype and a dispersing phenotype. Individuals that were site faithful at time t – 1 were therefore more likely to remain site faithful at time t. Our results also demonstrated that the probability that individuals belong to one or the other dispersal phenotypes depended on environmental and individual factors. In particular, we highlighted the existence of a dispersal syndrome implying a covariation pattern among dispersal behavior, body size, and survival. Our work opens new research prospects in the evolution of dispersal in organisms displaying complex life cycles and raises interesting questions about the evolutionary pathways that contribute to the diversification of movement strategies in the wild.  相似文献   

15.
Understanding the conditions for the stable coexistence of different alleles or species is a central topic in theoretical evolution and ecology. Different causes for stable polymorphism or species coexistence have already been identified but they can be grouped into a limited number of general processes. This article is devoted to the presentation and illustration of a new process, which we call 'habitat boundary polymorphism', and which relies on two key ingredients: habitat heterogeneity and distance-limited dispersal. Under direct competition and with fixed population densities, we show that this process allows for the equilibrium coexistence of more than n types in a n-habitat environment. Distance-limited dispersal indeed creates local maladaptation at habitat edges, which leaves room for the invasion of more generalist alleles or species. This mechanism provides a generic yet neglected process for the maintenance of polymorphism or species coexistence.  相似文献   

16.
Interactions between two species competing for space were studied using stochastic spatially explicit lattice-based simulations as well as pair approximations. The two species differed only in their dispersal strategies, which were characterized by the proportion of reproductive effort allocated to long-distance (far) dispersal versus short-distance (near) dispersal to adjacent sites. All population dynamics took place on landscapes with spatially clustered distributions of suitable habitat, described by two parameters specifying the amount and the local spatial autocorrelation of suitable habitat. Whereas previous results indicated that coexistence between pure near and far dispersers was very rare, taking place over only a very small region of the landscape parameter space, when mixed strategies are allowed, multiple strategies can coexist over a much wider variety of landscapes. On such spatially structured landscapes, the populations can partition the habitat according to local conditions, with one species using pure near dispersal to exploit large contiguous patches of suitable habitat, and another species using mixed dispersal to colonize isolated smaller patches (via far dispersal) and then rapidly exploit those patches (via near dispersal). An improved mean-field approximation which incorporates the spatially clustered habitat distribution is developed for modeling a single species on these landscapes, along with an improved Monte Carlo algorithm for generating spatially clustered habitat distributions.   相似文献   

17.
1. Stream salamanders and fish often co‐occur even though fish prey on and outcompete salamanders. However, the mechanisms that allow palatable salamanders to coexist with fish are unknown. 2. We tested mechanisms in the field that promote coexistence between Idaho giant salamanders (Dicamptodon aterrimus) and stream salmonid fishes in headwater streams. Previous research in this system indicated that salamander dispersal did not promote coexistence with fish. We tested the hypothesis that D. aterrimus shift their diet when they occur with fish, facilitating coexistence through local niche partitioning. 3. We used nitrogen and carbon stable isotopes to describe the trophic niche of D. aterrimus and fish in three co‐occurring populations of salamanders and fish and three populations of salamanders without fish. We used two approaches to quantify trophic niche partitioning with stable isotopes: 95% kernel density estimators and isotopic mixing models. 4. We found that salamanders and fish were generalists that consumed aquatic invertebrates primarily, but both species were also cannibalistic and predatory on one another. We also found no support for trophic niche partitioning as a coexistence mechanism because there were no differences in the trophic niche metrics among salamander populations with and without fish. 5. Although we did not identify mechanisms that facilitate salamander and fish coexistence, our empirical data and use of novel approaches to describe the trophic niche did yield important insights on the role of predator–prey interactions and cannibalism as alternative coexistence mechanisms. In addition, we found that 95% kernel estimators are a simple and robust method to describe population‐level measure of trophic structure.  相似文献   

18.
Many species exhibit dispersal processes with positive density- dependence. We model this behavior using an integrodifference equation where the individual dispersal probability is a monotone increasing function of local density. We investigate how this dispersal probability affects the spreading speed of a single population and its ability to persist in fragmented habitats. We demonstrate that density-dependent dispersal probability can act as a mechanism for coexistence of otherwise non-coexisting competitors. We show that in time-varying habitats, an intermediate dispersal probability will evolve. Analytically, we find that the spreading speed for the integrodifference equation with density-dependent dispersal probability is not linearly determined. Furthermore, the next-generation operator is not compact and, in general, neither order-preserving nor monotonicity-preserving. We give two explicit examples of non-monotone, discontinuous traveling-wave profiles.   相似文献   

19.
In this paper, we examine the effects of patch number and different dispersal patterns on dynamics of local populations and on the level of synchrony between them. Local population renewal is governed by the Ricker model and we also consider asymmetrical dispersal as well as the presence of environmental heterogeneity. Our results show that both population dynamics and the level of synchrony differ markedly between two and a larger number of local populations. For two patches different dispersal rules give very versatile dynamics. However, for a larger number of local populations the dynamics are similar irrespective of the dispersal rule. For example, for the parameter values yielding stable or periodic dynamics in a single population, the dynamics do not change when the patches are coupled with dispersal. High intensity of dispersal does not guarantee synchrony between local populations. The level of synchrony depends also on dispersal rule, the number of local populations, and the intrinsic rate of increase. In our study, the effects of density-independent and density-dependent dispersal rules do not show any consistent difference. The results call for caution when drawing general conclusions from models of only two interacting populations and question the applicability of a large number of theoretical papers dealing with two local populations.  相似文献   

20.
Abstract In the presence of permanent spatial heterogeneity, local dispersal, especially short‐range dispersal, can facilitate coexistence by concentrating low‐density species in the areas where their rates of increase are higher. We present a framework for predicting the effects of local dispersal on coexistence for arbitrary forms of dispersal and arbitrary spatial patterns of environmental variation. Using the lottery model as an example, we find that local dispersal contributes to coexistence by enhancing the effects of environmental variation on scales longer than typical dispersal distances, which can be characterized solely by the variance of the dispersal kernel. Higher moments of the dispersal kernel are not important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号