首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基因型和环境对小麦主要品质性状参数的影响   总被引:13,自引:0,他引:13  
利用8个冬小麦品种(系)于2002年种植在8个不同地点的试验结果,分析了品种(系)、环境以及品种(系)与环境的互作对谷蛋白大聚合体(GMP)及其组成、面团揉混仪参数及烘烤品质等主要品质性状的影响。结果表明,基因型对GMP、高、低分子量谷蛋白亚基有显著影响,说明GMP及其组成主要受基因型控制;沉淀值、峰值时间(MPT)、8min带宽(8TW)受环境影响程度比基因型小;而品种、环境及其互作对面包体积都有显著影响。小麦品质性状间的相关系数受环境条件的影响,不同地点品质性状问的相关系数不同。品种(系)和地点的互作效应在同一品种不同地点间是不同的,即使在不利的环境下,也有表现好的品种(系)。综合考虑对烘烤品质的影响,烟台点和济麦20表现最好。因此,进行品质评价时,不同地点间不仅考虑蛋白质含量的变化,还要考虑蛋白质质量、GMP及其组成、沉淀值、中线峰值时间以及8min带宽的变化规律。  相似文献   

2.
小麦HMW-G12亚基基因启动子克隆及序列分析   总被引:2,自引:1,他引:1  
为了研究高分子量谷蛋白基因启动子在种子中的特异性表达,以小麦品种“东农7742”的基因组DNA为模板,根据已发表序列设计并合成引物,用PCR的方法克隆了小麦贮藏蛋白中高分子量谷蛋白12亚基基因的上游调控序列。序列测定结果表明:所克隆的启动子片段大小为424bp与Thomspon报道的序列比较,同源性为97.9%,有9个核苷酸发生了改变。推测的TATA box位于-27— -30bp,Prolamin-box位于-175— -181bp,认为该元件可能与转录速率的调控有关。  相似文献   

3.
In this study, ten glutenin gene promoters were isolated from model wheat (Triticum aestivum L. cv. Chinese Spring) using a genomic PCR strategy with gene-specific primers. Six belonged to high-molecular-weight glutenin subunit (HMW-GS) gene promoters, and four to low-molecular-weight glutenin subunit (LMW-GS). Sequence lengths varied from 1361 to 2554 bp. We show that the glutenin gene promoter motifs are conserved in diverse sequences in this study, with HMW-GS and LMW-GS gene promoters characterized by distinct conserved motif combinations. Our findings show that HMW-GS promoters contain more functional motifs in the distal region of the glutenin gene promoter (> − 700 bp) compared with LMW-GS. The y-type HMW-GS gene promoters possess unique motifs including RY repeat and as-2 box compared to the x-type. We also identified important motifs in the distal region of HMW-GS gene promoters including the 5′-UTR Py-rich stretch motif and the as-2 box motif. We found that cis-acting elements in the distal region of promoter 1Bx7 enhanced the expression of HMW-GS gene 1Bx7. Taken together, these data support efforts in designing molecular breeding strategies aiming to improve wheat quality. Our results offer insight into the regulatory mechanisms of glutenin gene expression.  相似文献   

4.
Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli–tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes.  相似文献   

5.
End-use functionality of bread wheat depends mainly on the protein content, the presence of particular subunits of high and low molecular weight glutenin, the ratio of high molecular weight to low molecular weight glutenin subunits, and the ratio of glutenin to gliadin. The exact contribution of each of these factors to end-use functionality is still largely unknown. Transgenic plants can allow these factors to be studied within a particular background thus contributing to our understanding of end-use functionality. Two Canadian wheat lines, one of them containing high molecular weight glutenin subunits (HMW-GS) coded by all three Glu-1 loci and one line null at all three loci were assessed for dough rheological properties and bread and tortilla-making properties. Protein composition of the flours were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis, size exclusion high performance liquid chromatography, and sedimentation test. Proteins in the samples were fractionated and the proportions of monomeric proteins, soluble glutenin, and insoluble glutenin were quantified. Functionality of the flours were characterized by small-scale methods such as the 2 g mixograph, 10 g farinograph, and micro-extension testing. End-use quality was evaluated by small-scale bread and tortilla production. Mixograph development time and mixograph peak height were much higher for the lines containing HMW-GS. The lines null for HMW-GS showed no resistance to extension. Lines null for HMW-GS produced 'brick'-like bread. Tortilla prepared from the null lines had poor rollability and lower puncture force. The results showed very strong dependencies of quality on the presence of HMW-GS.  相似文献   

6.
Some allelic forms of low-molecular-weight glutenin subunit (LMW-GS) can greatly influence the end-use of wheat flours, understanding the function of each allele of LMW-GS is important to wheat quality breeding. A LMW-GS gene XYGluD3-LMWGS 1(AY263369) has been cloned from bread wheat cultivar Xiaoyan 6. The deduced protein contained nine cystine residues, one more than that in all other LMW-GSs reported previously, indicating that it is either a new gene or a new allele of a known LMW-GS gene. In this study, the gene was expressed in E. coil in large scale for the testing of its functional property. Reactive Red 120-Agarose resin was used efficiently to purify the expressed LMW-GS proteins from bacteria, with the lactic acid–sodium lactate buffer (pH 4.5) which contained low concentration SDS as elution solution. The purified protein (belonging to the LMW-m family, MW about 35 KDa) was supplemented into a base flour, the results of 10 g dough mixing test indicated that incorporation of the LMW-GS increased the strength of the dough, with significant increases in mixing time (MT) and peak width (PW), and decrease in breakdown in resistance (RBD) compared with the control. In addition, the dough with incorporation of the LMW-GS had more glutenin macropolyeric protein than the control, suggesting that the LMW-GS participated in forming larger glutenin polymers, and greatly contributed to dough strength. The changes in mixing parameters and the amount of glutenin macropolyeric protein were related to the quantity of incorporating subunits.  相似文献   

7.
Bread wheat quality is mainly correlated with high molecular weight glutenin subunits (HMW-GS) of endosperm. The number of HMW-GS alleles with good processing quality is limited in bread wheat cultivars, while there are plenty of HMW-GS alleles in wheat-related grasses to exploit. We report here on the cloning and characterization of HMW-GS alleles from the decaploid Agropyron elongatum. Eleven novel HMW-GS alleles were cloned from the grass. Of them, five are x-type and six y-type glutenin subunit genes. Three alleles Aex4, Aey7, and Aey9 showed high similarity with another three alleles from the diploid Lophopyrum elongatum, which provided direct evidence for the Ee genome origination of A. elongatum. It was noted that C-terminal regions of three alleles of the y-type genes Aey8, Aey9, and Aey10 showed more similarity with x-type genes than with other y-type genes. This demonstrates that there is a kind of intermediate state that appeared in the divergence between x- and y-type genes in the HMW-GS evolution. One x-type subunit, Aex4, with an additional cysteine residue, was speculated to be correlated with the good processing quality of wheat introgression lines. Aey4 was deduced to be a chimeric gene from the recombination between another two genes. How the HMW-GS genes of A. elongatum may contribute to the improvement of wheat processing quality are discussed.  相似文献   

8.
Wheat quality depends on protein composition and grain protein content. High molecular weight glutenin subunits (HMW-GS) play an important role in determining the viscoelastic properties of gluten. In an attempt to improve the bread-making quality of hexaploid wheat by elaborating novel HMW-GS combinations, a fragment of wheat chromosome 1D containing the Glu-D1 locus encoding the Dx2+Dy12 subunits was translocated to the long arm of chromosome 1A using the ph1b mutation. The partially isohomoeoallelic line selected was characterized using cytogenetical and molecular approaches to assess the amount of chromatin introgressed in the translocated 1A chromosome. Triple-target genomic in situ hybridization indicated that the translocated 1A chromosome had a terminal 1D segment representing 25% of the length of the recombinant long arm. The translocation was also identified on the long arm using molecular markers, and its length was estimated with a minimum of 91 cM. Proteome analysis was performed on total endosperm proteins. Out of the 152 major spots detected, 9 spots were up-regulated and 4 spots were down-regulated. Most of these proteins were identified as α-, β-, γ-gliadins assigned to the chromosomes of homoeologous groups 1 and 6. Quantitative variations in the HMW-GS were only observed in subunit Dy12 in response to duplication of the Glu-D1 locus.  相似文献   

9.
The content of specific proteins such as high-molecular-weight glutenin subunits HMW-GS 5+10 and low-molecular-weight glutenin subunits LMW-GS KS2 in wheat mill streams of extra-strong Kachikei 33 wheat was quantified by SDS-PAGE and 2D-PAGE. The mill streams showed varied quantities of HMW-GS 5+10 (0.077 to 2.007 mg/g of mill stream), LMW-GS KS2 (0.018 to 0.586 mg/g of mill stream) and total protein (9.42% to 18.98%). The contents of these specific proteins in the mill streams were significantly correlated with the SDS sedimentation volume and the mixing properties, which are respective indices of specific loaf volume and dough strength. The contents of these specific glutenin proteins in the mill streams were therefore found to be significantly important for improving the dough quality suitable for bread and Chinese noodles. Accordingly, we present here the application of this information to the development of an effective method for producing mill streams with high quality and yield that are suitable for instant Chinese noodles.  相似文献   

10.
低分子量麦谷蛋白亚基(LMW-GS)是小麦胚乳中的一种聚合蛋白组分,LMW-GS彼此间或/和高分子量麦谷蛋白亚基(HMW-GS)间形成分子内二硫键,进而产生麦谷蛋白聚合体,决定小麦面团的加工品质。由于 LMW-GS与醇溶蛋白的提取特性和电泳迁移率相近,其研究进展缓慢。近年来随着电泳技术的提高,LMW-GS的研究也成为品质性状研究的新热点,越来越多的研究证实了LMW-GS对品质具有重要作用。然而,关于LMW-GS 的研究在我国尚处于起步阶段。本文从小麦LMW-GS的分类、染色体定位、结构及其与品质间关系等方面回顾其研究状况,并讨论研究中存在的问题。  相似文献   

11.
Three monosomic lines (MSLs) and three nullisomic lines (NSLs) of the homeologous group 1 and one euploid line of the bread wheat Triticum aestivum cultivar Courtot were used in a proteomic approach to investigate the effects of zero, one or two doses of chromosomes 1A, 1B and 1D on the amount of endosperm proteins. Polypeptides whose amounts changed significantly between each aneuploid line and the euploid line were identified using image analyses of two-dimensional gel electrophoresis patterns resulting from specific endosperm protein extractions. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry were also used for protein identification. Removing one chromosome or a chromosome pair allowed varying responses to be observed for the remaining endosperm protein genes. Compensation phenomena for the high molecular weight glutenin subunits (HMW-GS) were detected only in the MSLs. Subunits Bx7, By8 and Dy12 were the only HMW-GS overexpressed (from 152-737%) when chromosomes 1A or 1B or 1D were at hemizygous state. Thirteen new protein spots were detected only in the NSL1D, and seven were identified as HMW-GS analogs. These seven new spots may result from the expression of inactive genes. The HMW-GS were of significantly higher volume in MSLs, whereas the low molecular weight glutenin subunits and the gamma-gliadins were of lower volume in aneuploid lines. Most of the down-regulated proteins in the MSLs were storage proteins encoded at loci located on another chromosome pair. Complex regulations between chromosomes and loci of the homeologous groups 1 and 6 in bread wheat are discussed.  相似文献   

12.
Both high- and low-molecular-weight glutenin subunits (LMW-GS) play the major role in determining the viscoelastic properties of wheat (Triticum aestivum L.) flour. To date there has been no clear correspondence between the amino acid sequences of LMW-GS derived from DNA sequencing and those of actual LMW-GS present in the endosperm. We have characterized a particular LMW-GS from hexaploid bread wheat, a major component of the glutenin polymer, which we call the 42K LMW-GS, and have isolated and sequenced the putative corresponding gene. Extensive amino acid sequences obtained directly for this 42K LMW-GS indicate correspondence between this protein and the putative corresponding gene. This subunit did not show a cysteine (Cys) at position 5, in contrast to what has frequently been reported for nucleotide-based sequences of LMW-GS. This Cys has been replaced by one occurring in the repeated-sequence domain, leaving the total number of Cys residues in the molecule the same as in various other LMW-GS. On the basis of the deduced amino acid sequence and literature-based assignment of disulfide linkages, a computer-generated molecular model of the 42K subunit was constructed.  相似文献   

13.
14.
While quality in hexaploid wheat (Triticum aestivum L. em Thell.) is a very complex trait, it is known that the water-insoluble gluten proteins are responsible for the elasticity and chohesiveness (strength) of dough and are therefore important determinants of breadmaking quality. High-molecular-weight (HMW) glutenin subunits encoded by genes on the long arm of group 1 chromosomes have been associated with gluten strength, and a portion of the variability between cultivars can be attributed to glutenin subunit composition. Good or poor wheat breadmaking quality is associated with two allelic pairs at the Glu-D1 complex locus, designated 1Dx5–1Dy10 and 1Dx2–1Dy12, respectively. Among the HMW glutenin subunits encoded at Glu-B1, Bx7 is quite common, being associated with either of two subunits, By8 or By9. Both allelic pairs contribute moderately well to good breadmaking quality by increasing dough elasticity. Glutenin subunit screening is accomplished using electrophoresis (SDS-PAGE). In this paper, I report the development of an alternative screening method based on glutenin genes themselves using the polymerase chain reaction (PCR). This easy, quick and non-destructive PCR-based approach is an efficient alternative to standard procedures for selecting bread-wheat genotypes with good breadmaking characteristics. Received: 14 August 1999 / Accepted: 21 March 2000  相似文献   

15.

Background  

High molecular weight glutenin subunits (HMW-GS) have been proved to be mostly correlated with the processing quality of common wheat (Triticum aestivum). But wheat cultivars have limited number of high quality HMW-GS. However, novel HMW-GS were found to be present in many wheat asymmetric somatic hybrid introgression lines of common wheat/Agropyron elongatum.  相似文献   

16.
高分子量麦谷蛋白亚基(HMW-GS)是小麦胚乳中一种具有多态性的蛋白质组分,在面团中它们可以通过相互之间或与低分子量麦谷蛋白亚基(LMw-Gs)之间形成二硫键来组成麦谷蛋白多聚体。由于其在小麦面粉加工所需的粘性和弹力方面具有极其重要的作用,过去几十年间在小麦加工品质相关蛋白研究方面的工作大多数集中在高分子量麦谷蛋白亚基上。近几年在高分子量麦谷蛋白亚基及其编码基因的鉴定、基因的遗传变异以及不同变异在小麦加工品质中的作用方面进行了大量研究。本文对近几年在HMW-GS领域的研究进展进行综述并且重点讨论HMW-GS的变异及其对小麦品质育种的重要意义。  相似文献   

17.
Sun M  Yan Y  Jiang Y  Xiao Y  Hu Y  Cai M  Li Y  Hsam SL  Zeller FJ 《Hereditas》2004,141(1):46-54
Cultivated emmer (Triticum dicoccum, 2n = 4x = 28, AABB) is closely related to bread wheat and possesses extensive allelic variations in high molecular weight glutenin subunit (HMW-GS) composition. These alleles may be an important genetic resource for wheat quality improvement. To isolate and clone HMW-GS genes from cultivated emmer, two pairs of allele-specific (AS) PCR primers were designed to amplify the coding sequence of y-type HMW-GS genes and their upstream sequences, respectively. The results showed that single bands of strong amplification were obtained through AS-PCR of genomic DNA from emmer. After cloning and sequencing the complete sequence of coding and 5'-flanking regions of a y-type subunit gene at Glu-A1 locus was obtained. Nucleotide and deduced amino acid sequences analysis showed that this gene possessed a similar structure as the previously reported Ay gene from common wheat, and is hence designated as Ay1d. The distinct feature of the Ay1d gene is that its coding region contains four stop codons and its upstream region has a 85-bp deletion in the same position of the Ay gene, which are probably responsible for the silencing of y-type subunit genes at Glu-A1 locus. Phylogenetic analysis of HMW glutenin subunit genes from different Triticum species and genomes were also carried out.  相似文献   

18.
刘永环  贺明荣  王晓英  张洪华 《生态学报》2009,29(11):5930-5935
选用强筋小麦品种济麦20、烟农19、藁麦8901做试验材料,设置不同氮肥基追比例和籽粒灌浆中后期高温胁迫处理,研究了不同氮肥基追比例对高温胁迫条件下小麦籽粒产量和品质的影响.研究结果表明,追氮比例由50%增加到70%,3个品种的千粒重、籽粒产量、粗蛋白含量、湿面筋含量、醇溶蛋白含量、谷蛋白含量、HMW-GS含量、LMW-GS含量、HMW-GS/LMW-GS比值显著提高.济麦20和烟农19的谷蛋白大聚合体含量、谷蛋白大聚合体体积加权平均粒径和表面积加权平均粒径因追氮比例提高而升高, 藁麦8901则无显著变化.济麦20和烟农19的面团形成时间、面团稳定时间因追氮比例提高而延长, 藁麦8901基本不受影响.追氮比例由50%增加到70%,3个品种的籽粒支链淀粉/直链淀粉比值显著降低,淀粉糊化高峰黏度、低谷黏度、稀懈值、最终黏度和反弹值相应降低.总之,提高氮肥追施比例可在一定程度上缓解灌浆期高温胁迫对小麦粒重和蛋白质质量的不利影响,但对淀粉质量产生负面效应,且品种间存在差异.  相似文献   

19.
H Q Wang  X Y Zhang 《Génome》2006,49(2):181-189
High-molecular-weight glutenin subunits (HMW-GSs) play an important role in the breadmaking quality of wheat flour. In China, cultivars such as Triticum aestivum 'Xiaoyan No. 6' carrying the 1Bx14 and 1By15 glutenin subunits usually have attributes that result in high-quality bread and noodles. HMW-GS 1Bx14 and 1By15 were isolated by preparative sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and used as an antigen to immunize BALB/c mice. A resulting monoclonal antibody belonging to the IgG1 subclass was shown to bind to all HMW-GSs of Triticum aestivum cultivars, but did not bind to other storage proteins of wheat seeds in a Western blot analysis. After screening a complementary DNA expression library from immature seeds of 'Xiaoyan No. 6' using the monoclonal antibody, the HMW-GS 1By15 gene was isolated and fully sequenced. The deduced amino acid sequence showed an extra stretch of 15 amino acid repeats consisting of a hexapeptide and a nonapeptide in the repetitive domain of this y-type HMW subunit. Bacterial expression of a modified 1By15 gene, in which the coding sequence for the signal peptide was removed and a BamHI site eliminated, gave rise to a protein with mobility identical to that of HMW-GSs extracted from seeds of 'Xiaoyan No. 6' via SDS-PAGE. This approach for isolating genes using specific monoclonal antibody against HMW-GS genes is a good alternative to the extensively used polymerase chain reaction (PCR) technology based on sequence homology of HMW-GSs in wheat and its relatives.  相似文献   

20.
One hundred and seventy two wheat varieties including twenty-five durum wheat cultivars were evaluated for high molecular weight glutenin subunit (HMW-GS) composition using SDS-PAGE. The relationship between HMW-GS and sedimentation tests for dough strength was studied. Three alleles were present at the Glu-A1 locus, eight at Glu-B1 and two at Glu-D1 in bread wheat. The data indicated the prevalence of the Glu-A1b allele (63.5%) at the Glu-A1 and Glu-D1a (71.4%) at Glu-D1 loci. Three alleles, namely Glu-B1b (30.61%), Glu-B1c (25.85%) and Glu-B1i (34.00%) represented about 90% of the alleles at Glu-B1 locus. The combination of Glu-A1b, Glu-B1i and Glu-D1d alleles exhibited highest dough strength as measured by sedimentation value in comparison to other combinations (p<0.001). However, this combination was present only in 7% of the samples evaluated. In durum wheat, the null allele (Glu-A1c) was observed more frequently (76%) than the Glu-A1b allele (24%). Glu-B1f and Glu-B1e alleles represented equally (32% each). Protein subunits 13+16 and 6+8 were found correlated positively (p<0.05) with improved dough strength as compared to subunit 20 in durum wheat. This information can be a valuable reference for designing breeding programme for the improvement of bread and pasta making quality of bread and durum wheats, respectively in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号