首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatopancreas of oyster, Crassostrea virginica, was found to contain two unique glycosphingolipid (GSL) cleaving enzymes, ceramide glycanase (CGase) and ceramidase. These two enzymes were found to be tightly associated together through the consecutive purification steps including gel filtration, hydrophobic interaction and cation-exchange chromatographies. They were separated only by preparatory SDS-PAGE. The purified CGase was found to have a molecular mass of 52 kDa and pH optimum of 3.2–3.3. This enzyme prefers to hydrolyze the acidic GSLs, II3SO3LacCer and gangliosides over the neutral GSLs. Oyster ceramidase was found to have a molecular mass of 88 kDa and pH optimum of 4–4.5. Since oyster ceramidase greatly prefers ceramides with C6 to C8 fatty acids, C6-ceramide (N-hexanoyl-D-sphingosine) was used as the substrate for its purification and characterization. The oyster acid ceramidase also catalyzed the synthesis of ceramide from a sphingosine and a fatty acid. For the synthesis, C16 and C18 fatty acids were the best precursors. The amino acid sequences of the two cyanogenbromide peptides derived from the purified ceramidase were found to have similarities to those of several neutral and alkaline ceramidases reported. The tight association of CGase and ceramidase may indicate that CGase in oyster hepatopancreas acts as a vehicle to release ceramide from GSLs for subsequent generation of sphingosines and fatty acids by ceramidase to serve as signaling factors and energy source.  相似文献   

2.
Ceramide glycanase (CGase) isolated from the leech Macrobdella decora was found to transfer the oligosaccharide en bloc from various glycosphingolipids to suitable acceptors. For example, CGase transferred the intact II3NeuAcGgOse4 from GM1 to 4-phenyl-1-butanol, 1,8-octanediol and various 1-alkanols having a chain length of six or more carbons. Among various 1-alkanols, 1-octanol was found to be the best acceptor. In an incubation mixture of 50 microliters containing 30 nmol of GM1, 50 micrograms of sodium cholate, 20 microliters of 1-octanol, and 0.1 unit of CGase, the ratio between hydrolysis and transglycosylation was approximately 3:1. Negative fast atom bombardment-mass spectral analysis of the enzymatically synthesized octyl-II3NeuAcGgOse4 showed a mass ion at m/z 1109.7 for the parent ion, consistent with its expected mass. NMR analysis of the enzymatically synthesized octyl-II3NeuAcGgOse4 showed that the Glc residue is linked to the octanol through a beta-linkage. Vicinal coupling constants of the ring protons of the sugar residues indicate that their pyranose ring geometries are not affected by the transferase activity. CGase also transferred the oligosaccharide from GM1 to CF3CO-NH(CH2)5CH2OH, (CH3)3CO-CO-NH(CH2)5CH2OH, (HOCH2)3C-NHCO-(CH2)4-COOMe, CH2 = CH-(CH2)7CH2OH and 1,2:3,4-di-O-isopropylidene-D-galactopyranose. The oligosaccharide transferring reaction carried out by CGase should become useful for the synthesis of neoglycoconjugates to study the biological functions expressed by glycan chains in glycosphingolipids.  相似文献   

3.
Ceramide glycanase (CGase) activities have been detected in different human tumor cells (colon, carcinoma Colo-205; neuroblastoma, IMR-32; breast cancer lines, SKBr3 and MCF7). However, the level of enzymatic activity is lower in these cells compared to that present in other mammalian tissues reported before (Basu, M., Kelly, P., Girzadas, M. A., Li, Z., and Basu, S. Methods Enzymol. (in press)). The majority of CGase activity was found in the 100,000g soluble supernatant fraction isolated from all these cell lines and tissues. Using the soluble enzyme, the requirement for optimum CGase activity was found to be consistent with previous observations found for rat and rabbit tissues (Basu, M., Dastgheib, S., Girzadas, M. A., O'Donnell, P. H., Westervelt, C. W., Li, Z., Inokuchi, J. I., and Basu, S. (1998) Acta Pol. Biochim. 42:327). The CGase activities from both Colo-205 and IMR-32 cells are optimum at a protein to detergent ratio of one. All the mammalian CGases, including human cancer cells, show an optimum pH between 5.5 and 5.8 in sodium acetate buffer. The CGase activities from cancer cells are found to be cation-independent; however, mercury, zinc, and copper ions seem to inhibit the enzyme activity substantially in both tumor cells lines. The mercury ion inhibition of CGase activities from all different sources indicates a possible structural homology in the CGase proteins.Radiolabeled substrates, labeled at the sphingosine double bond or at the 3-position of sphingosine without modifying double bond of sphingosine were used in this investigation. Both were active substrates with all enzyme preparations isolated from different cancer cells (apparent Km, 500 M for nLcOse5[3H-DT]Cer and 350 M for GgOse4[sph-3-3H]Cer with Colo-205 enzyme). Structural analogues of ceramide and sphingosine (L-PPMP, L-PDMP, alkylamines, and Tamoxifen) inhibited cancer cell CGase activities in vitro.  相似文献   

4.
Glycosphingolipids (GSLs) are composed of complex glycans linked to sphingosines and various fatty acid chains. Antibodies against several GSLs designated as stage-specific embryonic antigens (SSEAs), have been widely used to characterize differentiation of embryonic stem (ES) cells. In view of the cross-reactivities of these antibodies with multiple glycans, a few laboratories have employed advanced mass spectrometry (MS) technologies to define the dynamic changes of surface GSLs upon ES differentiation. However, the amphiphilic nature and heterogeneity of GSLs make them difficult to decipher. In our studies, systematic survey of GSL expression profiles in human ES cells and differentiated derivatives was conducted, primarily with matrix-assisted laser desorption/ionization MS (MALDI-MS) and MS/MS analyses. In addition to the well-known ES-specific markers, SSEA-3 and SSEA-4, several previously undisclosed globo- and lacto-series GSLs, including Gb4Cer, Lc4Cer, fucosyl Lc4Cer, Globo H, and disialyl Gb5Cer were identified in the undifferentiated human ES and induced pluripotent stem cells. Furthermore, during differentiation to embryoid body outgrowth, the core structures of GSLs switched from globo- and lacto- to ganglio-series. Lineage-specific differentiation was also marked by alterations of specific GSLs. During differentiation into neural progenitors, core structures shifted to primarily ganglio-series dominated by GD3. GSL patterns shifted to prominent expression of Gb4Cer with little SSEA-3 and-?4 or GD3 during endodermal differentiation. Several issues relevant to MS analysis and novel GSLs in ES cells were discussed. Finally, unique GSL signatures in ES and cancer cells are exploited in glycan-targeted anti-cancer immunotherapy and their mechanistic investigations were discussed using anti-GD2 mAb and Globo H as examples.  相似文献   

5.
The major neutral glycosphingolipids (GSLs) of High Five insect cells have been extracted, purified, and characterized. It was anticipated that GSLs from High Five cells would follow the arthro-series pathway, known to be expressed by both insects and nematodes at least through the common tetraglycosylceramide (Glcbeta1Cer --> Manbeta4Glcbeta1Cer [MacCer] --> GlcNAcbeta3Manbeta4Glcbeta1Cer [At(3)Cer] --> GalNAcbeta4- GlcNAcbeta3Manbeta4Glcbeta1Cer [At(4)Cer]). Surprisingly, the structures of the major neutral High Five GSLs already diverge from the arthro-series pathway at the level of the triglycosylceramide. Studies by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS) showed the structure of the predominant High Five triglycosylceramide to be Galbeta3Manbeta4Glcbeta1Cer, whereas the predominant tetraglycosylceramide was characterized as GalNAcalpha4Galbeta3Manbeta4- Glcbeta1Cer. Both of these structures are novel products for any cell or organism so far studied. The GalNAcalpha4 and Galbeta3 units are found in insect GSLs, but always as the fifth and sixth residues linked to GalNAcbeta4 in the arthro-series penta- and hexaglycosylceramide structures (At(5)Cer and At(6)Cer, respectively). The structure of the High Five tetraglycosylceramide thus requires a reversal of the usual order of action of the glycosyltransferases adding the GalNAcalpha4 and Galbeta3 residues in dipteran GSL biosynthesis and implies the existence of an insect Galbeta3-T capable of using Manbeta4Glcbeta1Cer as a substrate with high efficiency. The results demonstrate the potential appearance of unexpected glycoconjugate biosynthetic products even in widely used but unexamined systems, as well as a potential for core switching based on MacCer, as observed in mammalian cells based on the common LacCer intermediate.  相似文献   

6.
To investigate in detail the expression of glycosphingolipids (GSLs) on endothelial cells, 4.85 x 10(9) human umbilical vein endothelial cells (HUVECs) were cultivated in a 2 l bioreactor using microcarriers as a support for anchorage dependent growing cells. Neutral GSLs and gangliosides were isolated and their structures were determined by TLC immunostaining, fast atom bombardment-mass spectrometry (FAB-MS) of the native GSLs, and gas chromatography-electron impact mass spectrometry (GC-EIMS) of partially methylated alditol acetates. GbOse4Cer, GbOse3Cer, and LacCer, all carrying mainly C24- and C16-fatty acid beside C18-sphingosine, were detected as the major neutral GSLs (36%, 23%, and 15% of the total orcinol stain, respectively); GlcCer, nLcOse4Cer, and nLcOse6Cer were expressed to substantial minor amounts (9%, 12%, and 5% of the total orcinol stain, respectively). TLC immunostaining revealed the presence of lipid bound Lewisx antigen, whereas the isomeric Lewisa structure was detectable only in very low quantities. GM3(Neu5Ac) with C18-sphingosine was the major ganglioside constituting about 90% of the whole ganglioside fraction. The fatty acid composition was determined by GC-MS of fatty acid methyl esters, indicating the predominance of C24- and C16-substituted GM3(Neu5Ac), followed by C18- and C22-substituted species. Terminally alpha2-3 sialylated neolacto-series ganglioside IV3Neu5Ac-nLcOse4Cer was the second most abundant ganglioside in HUVECs (8% of the total resorcinol stain), and IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6Cer (together less than 2% of total resorcinol stain) were found in minor quantities. Lipid bound sialyl Lewisx antigen with poly-N-acetyllactosaminyl chains, and traces of gangliotetraose-type gangliosides GM1 and GD1a were identified by TLC immunostaining. The expression of dominant neutral GSLs LacCer, GbOse3Cer, and GbOse4Cer, and of ganglioside GM3(Neu5Ac) was assayed by indirect immunofluorescence microscopy of cell layers grown in chamber slides, each showing different plasma membrane and subcellular distribution patterns. The complete structural characterization of GSLs from HUVECs contributes to our understanding about their functional role, not only of the carbohydrate but also of the lipid moiety, as receptors for bacterial toxins, as cell surface antigens of cellular interaction and as receptors for blood components and macromolecules of the extracellular matrix.  相似文献   

7.
《Glycoconjugate journal》1995,12(5):721-728
The expression of neutral glycosphingolipids (GSLs) and gangliosides was investigated in cryosections of normal mouse skeletal muscle and in muscle of mice with neuromuscular diseases using indirect immunofluorescence microscopy. Transversal and longitudinal sections were immunostained with specific polyclonal antibodies against lactosylceramide, lacto-N-neotetraosylceramide, globoside, GM3(Neu5Ac), GM3(Neu5Gc) and GM1(Neu5Ac) as well as monoclonal anti-Forssman GSL antibody. In normal CBA/J mouse muscle (control) the main immunohistochemically detected ganglioside was GM3(Neu5Ac) followed by moderately expressed GM3(Neu5Gc) and GM1. The neutral GSLs lactosylceramide and globoside were stained with almost identical, high fluorescence intensity. Low amounts of lacto-N-neotetraosylceramide and trace quantities of Forssman GSL were immunostained. All GSLs were detected in the sarcolemma, but also in considerable amounts at the intracellular level. Mice with neuromuscular diseases were the A2G-adr mouse mutant (a model for human recessive myotonia of Becker type), the BL6-wr mutant (a model for motor neuron disease) and the BL10-mdx mouse mutant (a model for human Duchenne muscular dystrophy). No changes in GSL expression were found in the A2G-adr mouse, while muscle of the BL6-wr mouse showed increased intensity of immunofluorescence in stainings with anti-lactosylceramide and anti-GM3(Neu5Ac) antibodies. Muscle of BL10-mdx mice showed the most prominent changes in GSL expression with reduced fluorescence intensity for all antibodies. Major differences were not observed in the intensities of GSLs, but there were significant differences in the patterns of distribution on plasma membrane and at the subcellular level. The exact nature and pathogenesis of these changes should be elucidated since such investigations could furnish advances in understanding the functional role of neutral GSLs and gangliosides in normal as well as in diseased muscle. Abbreviations: BSA, bovine serum albumin; DAPI, 4, 6-diamidine-2-phenylindole-dihydrochloride; DTAF, dichlorotriazinylamino-fluorescein; GSL(s), glycosphingolipid(s); Neu5Ac,N-acetylneuraminic acid; Neu5Gc,N-glycolylneuraminic acid [53]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [54] and the nomenclature of Svennerholm [55]. Lactosylceramide or LacCer, Gal1-4Glc1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; globotriaosylceramide or GbOse3Cer, Gal1-4Gal1-4Glc1-1Cer; gangliotetraosylceramide or GgOse3Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; globotetraosylceramide or GbOse4Cer, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; Forssman GSL or GbOse5Cer, GalNAc1-3GalNAc1-3GAl1-4Gal1-4Glc1-1Cer; GM3, II3Neu5Ac-LacCer; GM1, II3Neu5Ac-GgOse4Cer.  相似文献   

8.
The125I-labeled fragment C of tetanus toxin was found to bind specifically to the gangliosides GD1b, GT1b, and GQ1b when applied to thin-layer chromatograms on which a mixture of gangliosides had been resolved. As little as 2.5 pmoles of these gangliosides could be detected by this method. In addition to factors determined by the sample, namely the amount and species of gangliosides present, optimal binding of the125I-labeled fragment C also depended upon the iodination procedure used to generate the probe, the toxin concentration, and the concentration, buffer type, pH, and ionic strength of the binding solution. This new technique was shown to be a sensitive method for the detection and identification of specific gangliosides originating from extraneural or neural cells.Nomenclature: The gangliosides follow the nomenclature system of Svennerholm [Eur J Biochem (1977) 79:11–21] GM3 II3NeuAc-LacCer - GD3 II3(NeuAc)2-LacCer - GM1 II3NeuAc-GgOse4Cer - GD1a IV3NeuAc, II3NeuAc-GgOse4Cer - GD1b II3(NeuAc)2-GgOse4Cer - GT1b IV3NeuAc, II3(NeuAc)2-GgOse4Cer - GQ1b IV3(Neu-Ac)2, II3(NeuAc)2-GgOse4Cer - GP1b IV3(NeuAc)3, II3(NeuAc)2-GgOse4Cer  相似文献   

9.
Expression of neutral glycosphingolipids (GSLs) and gangliosides in normal lymphoid tissues and cells has been studied mostly by biochemical and immunochemical analysis of lipid extracts separated by thin-layer chromatography. GSLs and gangliosides involved in the GM1b biosynthetic pathway were assigned to T-lymphocytes, whereas B-cell gangliosides and GSLs have been poorly characterized in former publications. We used specific polyclonal antibodies in immunohistochemistry and flow cytometry to analyze the distribution of globotriaosylceramide (Gb(3)Cer), globoside (Gb(4)Cer), gangliotriaosylceramide (Gg(3)Cer), gangliotetraosylceramide (Gg(4)Cer), and gangliosides GM3 and GalNAc-GM1b in the mouse thymus, spleen, and lymph node. Immature thymocytes expressed epitopes recognized by all antibodies, except for anti-Gb(4)Cer. Mature thymocytes bound only antibodies to GalNAc-GM1b, Gg(4)Cer, and Gb(4)Cer. In secondary lymphoid organs, antibodies to globo-series GSLs bound to vascular spaces of secondary lymphoid organs, whereas the ganglio-series GSL antibodies recognized lymphocyte-containing regions. In a Western blotting analysis, only GalNAc-GM1b antibody recognized a specific protein band in all three organs. Flow cytometric analysis of spleen and lymph node cells revealed that B-cells carried epitopes recognized by all antibodies, whereas the T-cell GSL repertoire was mostly oriented to ganglio-series-neutral GSLs and GM1b-type gangliosides. The results of immunohistochemistry and flow cytometry were not always identical, possibly because of crossreactivity to glycoprotein-linked oligosaccharides and/or differences between cell surface carbohydrate profiles of isolated cells and cells in a tissue environment.  相似文献   

10.
EnterotoxigenicEscherichia coli (ETEC) strains expressing F5 (K99) fimbriae cause diarrhoea in the young animal through adhesion to specific sialoglycolipids of the small intestine surface. We studied here an infant mouse diarrhoea model, as CBA infant mice are susceptible to F5-positive ETEC infection, whereas DBA/2 ones are resistant. In an attempt to determine an enzymatic basis for susceptibility and resistance, we investigated the intestine ganglioside pattern in relation to the activity of glycosyltransferases responsible for the globo- and ganglio-series. We observed that the intestine of susceptible CBA infant mice displayed a characteristic sialoglycolipid pattern containing mainly the F5 receptors. The two murine strains differed in the relative activities of galactosyltransferases (GbOse3Cer and GM1 synthases),N-acetylgalactosylaminyltransferases (GA2 and GM2 synthases) and sialyltransferases (GM3 and GD3 synthases). An elevated GM3-synthase activity was observed in the intestine of susceptible CBA infant mice, at the age of high susceptibility. Hence, we conclude that the marked specificity of mouse type correlated with susceptibility and resistance to F5-positive ETEC infection which could be controlled through the regulation of glycosyltransferase activities.Abbreviations NeuAc N-acetylneuraminic acid - NeuGc N-glycolylneuraminic acid - Glc glucose - GalNAc N-acetylgalactosamine - Gal galactose - Car ceramide - LacCer lactosylceramide (Galß-4Glcß1-1Cer) - GA2 asialo-GM2 (GgOse3Cer) - GA1 asialo-GM1 (GgOse4Cer) - NeuAc/NeuGc-GMla II3 NeuAc/NeuGc-GgOse4Cer - NeuAc/NeuGc-GM1a IV3 NeuAc/NeuGc-GgOse4Cer - NeuAc/NeuGc-GM2 II3 NeuAc/neuGc-GgOse3Cer - NeuAc/NeuGc-GM3, II3 NeuAc/NeuGc-LacCer; NeuAc/NeuGc-GD1a, IV3 NeuAc/NeuGc, II3 NeuAc/NeuGc-GgOse4Cer; NeuAc/NeuGc-GD1b II3 (NeuAc/NeuGc)2-GgOse4Cer - NeuAc/NeuGc-GD1c IV3 (NeuAc/NeuGc)2-GgOse4Cer - NeuAc/NeuGc-GD2, II3 (NeuAc/NeuGc)2-GgOse3Cer; NeuAc/NeuGc-GD3, II3 (NeuAc/NeuGc)2-Lac Cer; NeuAc/NeuGcGT1a IV3 (NeuAc/NeuGc)2, II3 NeuAc/NeuGc-GgOse4Cer - NeuAc/neuGc-GT1b IV3 NeuAc/NeuGc, II3 (NeuAc/NeuGc)2-GgOse4Cer - NeuAc/NeuGc-GT1c II3 (NeuAc/NeuGc)3-GgOse4Cer; NeuAc/NeuGc-GT2, II3 (NeuAc/NeuGc)3-GgOse3Cer - NeuAc/NeuGc-GT3 II3 (NeuAc/NeuGc)3-Lac Cer - NeuAc/NeuGc-GQ1b IV3 (NeuAc/NeuGc)2, II3 (NeuAc/NeuGc)2-GgOse4Cer - NeuAc/NeuGc-GQ1c IV3 NeuAc/NeuGc, II3 (NeuAc/NeuGc)3-GgOse4Cer - NeuAc/NeuGc-GP1c IV3 (NeuAc/NeuGc)2, II3 (NeuAc/NeuGc)3-GgOse4Cer - GD, GT and GQ di-, tri- and tetra-sialoglangliosides. NeuGc-SPG, IV3 NeuGc-nLcOse4Cer. Glycosyltransferases assayed in this work areN-acetylgalactosaminyltransferases - UDP-GalNAc lactosylceramide 1-4N-acetylgalactosaminyltransferase or GA2 synthase (EC 2.4.1-) and UDP-GalNAc:(N-acetylneuraminyl)-lactosylceramide 1-4N-acetylgalactosaminyltransferase or GM2 synthase (EC 2.4.1.92) - sialyltransferases CMP-N-acetylneuraminate: lactosylceramide 2–3 sialyltransferase (sialyltransferases I and IV) or GM3 synthase (EC 2.4.99.-) and CMP-N-acetylneuraminate:(N-acetylneuraminyl) lactosylceramide 2-8 sialyltransferase (sialyltransferase II) or GD3 synthase (EC 24.99.8) - galactosyltransferases UDP-galactose:N-acetylgalactosaminyl-(N-acetylneuraminyl) lactosylceramide 1-3 galactosyltransferase (galactosyltransferase II) or GM1a synthase (EC 2.4.1.62) and UDP-galactose:lactosylceramide 1-4 galactosyltransferase or GbOse3Cer synthase (EC 2.4.1-)  相似文献   

11.
Abstract: The influence of divalent cations on glycosphingolipid metabolism was examined in the NB41A mouse neuroblastoma clonal cell line. HPLC methods were utilized to quantitate the effects on neutral glycolipids and monosialogangliosides. NB41A cells were shown to contain GM3, GM2, GM1, GD3, and GD1a by HPLC and TLC. The neutral glycosphingolipids consisted of glucosylceramide (GlcCer), lactosylceramide (LacCer), GaINAc(β1→4) Gal(β1→4)Glc(β1→1)Cer (GgOse3Cer), and GaINAc(β1→3)Gal(α1→4) Gal-(β1→4)Glc(β1→1)Cer (GbOse3Cer) according to their HPLC behavior. Cells grown in the presence of 1.85 mm -EGTA showed a two- to threefold increase in GM3 whereas other glycosphingolipids were only slightly affected. When cells were grown in the presence of 1.45 mm -EGTA plus 0.4 mm -EDTA a similar increase in GM3 was observed but this change was now accompanied by decreases in GM2, GM1 GgOse3Cer, and GbOse4Cer. The EGTA-EDTA effects were reversed when growth was in the presence of Ca2+ sufficient to bind all chelator. Mn2+ replacement reversed the chelator effects differentially; GM2 and GM1 levels were the most sensitive to increases in Mn2+ concentration; GgOse3Cer and GbOse4Cer were also sensitive, whereas GM3 was the least affected. These results suggest calcium serves an important regulatory role on GM3 levels and that manganese concentration may regulate the levels of galactosamine-containing glycolipids in mouse NB41A neuroblastoma cells.  相似文献   

12.
The aim of the present study was to investigate the ganglioside expression of the highly metastatic murine lymphoreticular tumour cell line MDAY-D2. Cells were propagated under controlled pH conditions and oxygen supply in bioreactors of 1 and 7.5l volumes by repeated batch fermentation. Gangliosides were isolated from 2.7×1011 cells, purified by silica gel chromatography and separated into mono- and disialoganglioside fractions by preparative DEAE anion exchange high performance liquid chromatography. Individual gangliosides were obtained by preparative thin layer chromatography. Their structural features were established by immunostaining, fast atom bombardment and gas chromatography mass spectrometry. In addition to gangliosides of the GM1a-pathway (GM2, GM1a and GD1a) and GM1b (IV3Neu5Ac-GgOse4Cer) and GalNAc-GM1b of the GM1b-pathway, the dis8aloganglioside GD1 (IV3Neu5Ac, III6Neu5Ac-GgOse4Cer) was found in equal amounts compared to GD1a (IV3Neu5Ac, II3Neu5Ac-GgOse4Cer). All gangliosides were substituted with C24:0,24:1 and C16:0 fatty acids, sphingosine andN-acetylneuraminic acid as the sole sialic acid. Abbreviations: FAB-MS, fast atom bombardment-mass spectrometry; GC-MS, gas chromatography-mass spectrometry; GSL(s), glycosphingolipid(s); HPLC, high performance liquid chromatography; HPTLC, high performance thin layer chromatography; Neu5Ac,N-acetylneuraminic acid; Neu5Gc,N-glycoloylneuraminic acid [57]. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [58] and the nomenclature of Svennerholm [59]. Gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; gangliotetraosylceramide or GgOse4Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer gangliopentaosylceramide or GgOse5Cer, GalNAc1-4Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; GM2, II3Neu5Ac-GgOse3Cer; GM1a, II3Neu5Ac-GgOse4Cer; GM1b, IV3Neu5Ac-GgOse4Cer; GalNAc-GM1b, IV3Neu5Ac-GgOse5Cer; GD1a, IV3Neu5Ac, II3Neu5Ac-GgOse4Cer; GD1b, II3(Neu5Ac)2-GgOse4Cer; GD1 or GD1e, IV3Neu5Ac, III6Neu5AcGgOse4Cer; GD1e, IV3(Neu5Ac)2-GgOse4Cer; GT1b, IV3Neu5Ac, II3(Neu5Ac)2-GgOse4Cer.  相似文献   

13.
The structures of gangliosides from human granulocytes were elucidated by fast atom bombardment mass spectrometry and by gas chromatography/mass spectrometry as their partially methylated alditol acetates. In human granulocytes besides GM3 (II3Neu5Ac-LacCer), neolacto-series gangliosides (IV3Neu5Ac-nLcOse4Cer, IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6Cer) containing C24:1, and to some extent C22:0; and C16:0 fatty acid in their respective ceramide portions, were identified as major components. In this study we demonstrate that gangliosides from human granulocytes, the second most abundant cells in peripheral blood, can serve as receptors for influenza viruses A/PR/8/34 (H1N1), A/X-31 (H3N2), and a parainfluenza virus Sendai virus (HNF1, Z-strain). Viruses were found to exhibit specific adhesion to terminal Neu5Ac2-3Gal and/or Neu5Ac2-6Gal sequences as well as depending on the chain length of ganglioside carbohydrate backbones from human granulocytes, these important effector cells which represent the first line of defence in immunologically mediated reactions. Abbreviations: FAB-MS, fast atom bombardment mass spectrometry; GC/EIMS, gas chromatography/electron impact mass spectrometry; GSL(s) glycosphingolipids; HPTLC, high performance thin-layer chromatography; Neu5Ac,N-acetylneuraminic acid [26], PFU, plaque forming unit. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations, and the ganglioside nomenclature system of Svennerholm was used. LacCer or lactosylceramide, Gal1-4Glc1-1Cer gangliotetraosylceramide or GgOse4Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; lacto-N-tetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4-Glc1-1Cer; lacto-N-norhexaosylceramide or nLcOse6Cer, Gal1-4GlcNAc1-3Gal1-4GlcNAc1-3Gal 1-4-Glc1-1Cer; GM3, II3Neu5Ac-LacCer; GM1, II3Neu5Ac-GgOse4Cer; GD1a, IV3Neu5Ac, II3Neu5Ac-GgOse4Cer; GD1b, II3(Neu5Ac)2-GgOse4Cer; GT1b, IV3Neu5Ac, II3(Neu5Ac)2-GgOse4Cer; GQ1b, IV3(Neu5Ac)2, II3(Neu5Ac)2-GgOse4Cer; sialyllacto-N-tetraosylceramide, IV3Neu5Ac/IV6Neu5Ac-nLcOse4Cer; sialyllacto-N-norhexaosylceramide or i-active ganglioside, VI3Neu5Ac-nLcOse6Cer.  相似文献   

14.
Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform for in vitro study of their functional interactions. However, with few exceptions, the most widely used microarray platforms display only the glycan moiety of GSLs, which not only ignores potential modulating effects of the lipid aglycone, but inherently limits the scope of application, excluding, for example, the major classes of plant and fungal GSLs. In this work, a prototype “universal” GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-GM1, with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2-mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut agglutinin, a monoclonal antibody to sulfatide, Sulph 1; and a polyclonal antiserum reactive to asialo-GM2). Preliminary evaluation of the method indicated successful immobilization of the GSLs, and selective binding of test probes. The potential utility of this methodology for designing covalent microarrays that incorporate GSLs for serodiagnosis is discussed.  相似文献   

15.
Summary The developmental accretion of up to nine individual gangliosides in foetal brains, peri- and postnatal cortices, postnatal cerebelli and olfactory lobes and in the liver and the spleen were investigated in mice and compared with that of glycoprotein-bound sialic acid and the activity of the acetylcholinesterase.In foetal brain and in postnatal liver and spleen more sialic acid was found bound to glycoproteins than to gangliosides. In postnatal brain structures, however, ganglioside-NeuAc predominated and increased between the 7th and 21st d about 2-fold in the olfactory lobes and cerebellum and more than 3-fold in the cortex.During foetal development the relative quantities (mol %) as well as the absolute concentrations (compared with the fresh weight) of GM1, GM2 and GM3 in the brain decreased, whereas those of GD1a, GD1b and GQ increased.This pattern change continued perinatally in the cortex up to the end of the first week. Thereafter the pattern changed little, but the concentration of all gangliosides present increased much more rapidly, especially between the 10th and 13th d.The postnatal cerebellum and olfactory lobes contained higher concentrations of GM1 and GM3 than the cortex, both gangliosides decreasing in favour of their di-, tri- and tetrasialo-homologues during the third postnatal week.In all brains structures the accretion of GD1a and GT1 was proportional to the increase in the activity of the acetylcholinesterase.Unlike the brain structures, the ganglioside pattern in the liver and spleen, characterised by a predominance of monosialogangliosides and of GD3, did not change noticeably during the first three weeks after birth.The coincidence of the changes in ganglioside accretion observed in the different brain structures with successive periods of morphological differentiation further support the suggestion that gangliosides may play an important role in control of the growth and differentiation of developing nerve cells.Abbreviations GM3 II3NeuAc-GgOse2Cer - GM2 II3NeuAc-GgOse3Cer - GM1 II3NeuAcGgOse4Cer - GD1a IV3NeuAc-, II3 NeuAc-GgOse4Cer - GD3 II3 NeuAc2-GgOse2Cer - GD2 II3 NeuAc2-GgOse3 Cer - GD1b II3 NeuAc2-GgOse4 Cer - GT1 IV3 NeuAc-, II3 NeuAc2-GgOse4 Cer - GQ IV3 NeuAc-, II3 NeuAc3-GgOse4 Cer - NeuAc N-acetylneuraminic acid (sialic acid) - AChE Acetylcholinesterase  相似文献   

16.
Summary Glycosphingolipid biosynthesis was examined using [3H]-galactose as a precursor as rat L6 myoblasts fused to form multinucleated myotubes. Incorporation of label into neutral glycolipids decreased steadily as the population of myotubes increased, so that final biosynthesis was one-half that observed with myoblasts (p < 0.02). Conversely, ganglioside biosynthesis doubled during myoblast confluency (p < 0.02) and then decreased as myotubes formed. Qualitatively, L6 cells synthesized large amounts of ganglioside GM3 during all myogenic phases. The major neutral glycosphingolipid products were lactosylceramide and paragloboside (nLcOse4Cer). Few changes in TLC autoradiographic patterns were noted during differentiation, with the exception of a slight decrease in ganglioside GM1. The results indicate that the biosynthesis of glycosphingolipids is tightly regulated during myogenesis in vitro and suggest a role for membrane gangliosides in muscle cell differentiation.Abbreviations GM1 II3NeuAc-GgOse4Cer - GM3 II3NeuAc-GgOse2Cer - MG4 IV3NeuAc-nLcOse4Cer - MG6 VI3NeuAc V4Gal-IV3GlcNAc-nLcOse4Cer - TLC Thin-Layer Chromatography - DMEM Dulbecco's Modified Eagles' Medium  相似文献   

17.
Heterophile, Hanganutziu-Deicher (HD) antigen-active N-glycolylneuraminic acid-containing glycosphingolipids (GSLs) were detected as tumor-associated foreign antigens of a Marek's disease lymphoma-derived cell line, MSB1, by enzyme-immunoassay with chicken antibody against N-glycolylneuraminyl-lactosylceramide (anti-NeuGc-LacCer). At least three species of HD antigen-active GSLs were detected by two-dimensional thin-layer chromatography (TLC) combined with enzyme-immunoassay. The reactivities of the GSLs with anti-NeuGc-LacCer, their behaviors on two-dimensional TLC and the results of an endo-beta-galactosidase digestion study indicated that these three GSLs were NeuGc-LacCer (NeuGc alpha 2-2Gal beta 1-4Glc-Cer), NeuGc-nLcOse4Cer (NeuGc alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) and NeuGc-nLcOse6Cer (NeuGc alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer).  相似文献   

18.
Abstract: Neolactoglycolipids are derived from neolactotetraosylceramide (nLcOse4Cer). They are found during the embryonic and neonatal developmental periods in the rat cerebral cortex and disappear shortly after birth. These glycolipids are, however, abundant in the adult cerebellum. Lactotriosylceramide (LcOse3Cer):galactosyltrans- ferase (GT), which catalyzes the terminal step in the biosynthesis of nLcOse4Cer, was characterized in mammalian brain. The enzyme was highly specific for LcOse3Cer, with a terminal GlcNAcβ1 -3Gal-residue, and it did not catalyze the transfer of galactose to other glycolipids studied with alternate carbohydrate residues. The microsomal membrane enzyme required Mn2+ and a detergent for in vitro activity. The optimal pH was 7.4, and the Km value for LcOse3Cer was 34 μM (Vmax=~2 nmol/mg/h). The LcOse3Cer:GT was shown to be different from the GM2:GT and the soluble enzyme lactose synthase A. The specific activity of LcOse3Cer:GT was enriched fivefold higher in the white matter than in the gray matter of young adult rat brain, whereas GM2:GT was enriched only about 1.5-fold higher in the white matter. The developmental expression of LcOse3Cer:GT in the cerebral cortex and cerebellum was not correlative with the levels of nLcOse4Cer in these neural areas. Despite the complete absence of nLcOse4Cer in the cerebral cortex of animals older than 5 days, significant activity of the LcOse3Cer:GT was found even in the adult cortex. In cerebellum, the levels of nLcOse4Cer increased with development, but the specific activity of the enzyme was reduced by 50% soon after birth and then remained practically the same with development. The results indicate that LcOse3Cer:GT is not a regulatory enzyme that controls the expression of nLcOse4Cer and its derived neolactoglycolipids in the brain.  相似文献   

19.
YAC-1 cells were propagated in bioreactors in 11 and 7.51 volumes. The cells were metabolically labelled withd-[1-14C]galactose andd-[1-14C]glucosamine. The ganglioside fraction, purified by DEAE-Sepharose and silica gel column chromatography, showed on thin layer chromatography four major bands with mobilities between GM1 and GD1a. Gangliosides, obtained by further purification steps including high performance liquid chromatography on silica gel 60 columns with a gradient system of isopropanol:hexane:water, and preparative high performance TLC were characterized by (1) immunostaining of corresponding asialogangliosides obtained by mild acid hydrolysis and neuraminidase treatment and (2) fast atom bombardment mass spectrometry of native and permethylated samples and methylation analysis of GM1b ganglioside. As well as small amounts of GM2 and GM1, the major gangliosides found in the complex mixture were GM1b and GalNAc-GM1b. The structural heterogeneity of these gangliosides was cased by (a) substitution of the ceramide moiety by fatty acids of different chain length and degree of unsaturation (C16:0, C24:0, C24:1) and (b) N-substitution of the sialic acid moieties with either acetyl or glycolyl groups. Disialogangliosides were detected only in low amounts and will be the subject of further investigation. A polyclonal chicken antiserum was raised against IVNeuAc-GgOse5Cer. The antiserum was highly specific for gangliosides (IVNeuAc and IVNeuGc) and asialogangliosides with a GgOse5Cer backbone. No cross-reaction with GM1b or GgOse4Cer was observed. Abbreviations: FAB-MS, fast atom bombardment mass spectrometry; GSL(s), glycosphingolipid(s); HPLC, high performance liquid chromatography, HPTLC, high performance thin layer chromatography; NK, natural killer; SIM, selective ion monitoring; TIC, total ion current. NeuAc,N-acetylneuraminic acid; NeuGc,N-glycolylneuraminic acid. The designation of the following glycosphingolipids follows the IUB-IUPAC recommendations. GgOse3Cer or gangliotriaosylceramide or asialo GM2, GalNAc1-4Gal1-4GlcCer; GgOse4Cer or gangliotetraosylceramide or asialo GM1, Gal1-3GalNAc1-4Gal1-4GlcCer; GgOse5Cer organgliopentaosylceramide, GalNAc1-4Gal1-3GalNAc1-4Gal1-4GlcCer; II3NeuAc-GgOse4Cer or GM1; IV3NeuAcGgOse4Cer or GM1b; IV3NeuAc-GgOse5Cer or GalNAc-GM1b; IV3NeuAc, II3NeuAc-GgOse4Cer or GD1a; II3(NeuAc)2-GgOse4Cer or GD1b; IV3(NeuAc)2-GgOse4Cer or GD1c; IV3NeuAc,III6NeuAc-GgOse4Cer or GD1a; IV3NeuAc,II3(NeuAc)2-GgOse4Cer or GT1b;Vibrio cholerae and Arthrobacter ureafaciens neuraminidase (EC 3.2.1.18).  相似文献   

20.
A novel mono-sulfated glycosphingolipid based on the gangliotriaose core structure was isolated from rat kidney. The isolation procedure involved extraction of lipids with chloroform/methanol, mild alkaline methanolysis, column chromatographies with anion exchangers and silica beads. The structure was characterized by compositional analysis, FTIR spectroscopy, methylation analysis,1H-NMR spectroscopy and negative-ion liquid secondary ion mass spectrometry (LSIMS) using the intact glycolipid and its desulfation product. The two dimensional chemical shift correlated spectroscopy provided information on the sugar sequence as well as anomeric configurations, and indicated the presence of a 3-O-sulfatedN-acetylgalactosamine within the molecule. Negative-ion LSIMS with high- and low-energy collision-induced dissociation defined the sugar sequence and ceramide composition, confirming the presence of a sulfatedN-acetylgalactosamine at the non-reducing terminus. From these results, the complete structure was proposed to be HSO3-3GalNAc1-4Gal1-4Glc1-1Cer (Gg3Cer III3-sulfate, SM2b). Abbreviations: Abbreviations for sulfated glycolipids [17] follow the modifications of the nomenclature system of Svennerholm for gangliosides [37], and the designation of the other glycosphingolipids follows the IUPAC-IUB recommendations [38]. Cer, ceramide; LacCer, lactosylceramide, Gal1-4Glc1-1Cer; Gg3Cer, gangliotriaosylceramide, GalNAc1-4Gal1-4Glc1-1Cer; Gg4Cer, gangliotetraosylceramide, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; iGb4Cer, isoglobotetraosylceramide, GalNAc1-3Gal1-3Gal1-4Glc1-1Cer; Gb4Cer, globotetraosylceramide, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; SM4s, galactosylceramide sulfate, GalCer I3-sulfate; SM3, lactosylceramide sulfate, LacCer II3-sulfate; SM2a, Gg3Cer II3-sulfate; SM2b, Gg3Cer III3-sulfate; SB2, Gg3Cer II3,III3-bis-sulfate; SM1a, Gg4Cer II3-sulfate; SM1b, Gg4Cer IV3-sulfate; SB1a, Gg4Cer II3,IV3-bissulfate; GLC, gas-liquid chromatography; GC-MS, gas chromatography-mass spectrometry; DQF, double quantum filtered; COSY, chemical-shift-correlated spectroscopy; LSIMS, liquid secondary ion mass spectrometry; CID, collision-induced dissociation; MS/MS, tandem mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号