首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In most social insects, the brood is totipotent and environmental factors determine whether a female egg will develop into a reproductive queen or a functionally sterile worker. However, genetic factors have been shown to affect the female's caste fate in a few ant species. The desert ant Cataglyphis hispanica reproduces by social hybridogenesis. All populations are characterized by the coexistence of two distinct genetic lineages. Queens are almost always found mated with a male of the alternate lineage than their own. Workers develop from hybrid crosses between the genetic lineages, whereas daughter queens are produced asexually via parthenogenesis. Here, we show that the association between genotype and caste in this species is maintained by a ‘hard‐wired’ genetic caste determination system, whereby nonhybrid genomes have lost the ability to develop as workers. Genetic analyses reveal that, in a rare population with multiple‐queen colonies, a significant proportion of nestmate queens are mated with males of their own lineage. These queens fail to produce worker offspring; they produce only purebred daughter queens by sexual reproduction. We discuss how the production of reproductive queens through sexual, intralineage crosses may favour the stability of social hybridogenesis in this species.  相似文献   

2.
Queens of hymenopteran social parasites manipulate the workers of other social species into raising their offspring. However, nonconspecific brood care may also allow the parasite larvae to control their own development to a greater extent than possible in nonparasitic species. An evolutionary consequence of this may be the loss of the parasite's worker caste if the larvae can increase their fitness by developing into sexuals rather than workers. We argue that this loss is particularly likely in species in which there is little inclusive fitness benefit in working. Retention of a worker caste correlates with characteristics that increase the fitness of working relative to becoming a sexual, such as worker-production of males, high intracolony relatedness, and seasonal environments where the hosts of potential parasite queens are not always available. Further evidence strongly suggests that when the worker caste is evolutionarily lost in perennial species like ants, it disappears rapidly and through a reduction in caste threshold and queen size, so that parasite larvae become queens with less food than required to produce host workers. This evolutionary process, however, appears to lower overall population fitness, resulting in workerless parasite species having small populations and being geographically restricted. Conversely, in annual species like bees and wasps, workerless social parasitism evolves with no size reduction in queens, which is consistent with an expected lower level of queen/offspring conflict.  相似文献   

3.
Understanding the life-history complex of eusociality has remained an enduring problem in evolutionary ecology, partially because natural selection models have considered traits in relative isolation. I aim for a more inclusive model that uses ecological interactions to predict the evolutionary existence of sexual reproduction, sexual reproduction asymmetry, and sex ratios in eusocial species. Using a two-level selection process, with within-population selection on the sex ratio of the sexual caste and between-population selection on the worker sex ratio and the degree of sexual reproduction asymmetry, it is found that a male-haploid genome and a worker caste of pure females is the evolutionary optimum of most initial conditions when, like in eusocial hymenoptera, there is no pair bond between the sexual male and female. That a diploid genome and a worker caste with both males and females is the evolutionary optimum of most initial conditions when, like in eusocial termites, there is a pair bond. That sex-linked genomes may evolve in diploid eusocials, and that the model will not generally maintain sexual reproduction by itself. These results hold for ploidy-levels that behave as quantitative or discrete traits, over a relatively wide range of the relative investment in a sexual male versus sexual female, and for partial sexual systems where the genomic portion with diploid inheritance is either fixed or random.  相似文献   

4.
The intense interest in social Hymenoptera, on account of their elaborate sociality and the paradox of altruism, has often suffered from considerable gender imbalance. This is partly due to the fact that worker behaviour and altruism are restricted to the females and partly because males often live off the nest. Yet, understanding the males, especially in the context of mating biology is essential even for understanding the evolution of sociality. Mating patterns have a direct bearing on the levels of intra-colony genetic relatedness, which in turn, along with the associated costs and benefits of worker behaviour, are central to our understanding of the evolution of sociality. Although mating takes place away from the nest in natural colonies of the primitively eusocial wasp Ropalidia marginata, mating can be observed in the laboratory if a male and a female are placed in a transparent, aerated plastic container, and both wasps are in the range of 5–20 days of age. Here, we use this setup and show that males, but not females, mate serially with multiple partners. The multiple mating behaviour of the males is not surprising because in nature males have to mate with a number of females, only a few of whom will go on to lay eggs. The reluctance of R. marginata females to mate with multiple partners is consistent with the expectation of monogamy in primitively eusocial species with totipotent females, although the apparent discrepancy with a previous work with allozyme markers in natural colonies suggesting that females may sometimes mate with two or three different males remains to be resolved.  相似文献   

5.
Social parasites exploit the colony resources of social insects. Some of them exploit the host colony as a food resource or as a shelter whereas other species also exploit the brood care behavior of their social host. Some of these species have even lost the worker caste and rely completely on the host''s worker force to rear their offspring. To avoid host defenses and bypass their recognition code, these social parasites have developed several sophisticated chemical infiltration strategies. These infiltration strategies have been highly studied in several hymenopterans. Once a social parasite has successfully entered a host nest and integrated its social system, its emerging offspring still face the same challenge of avoiding host recognition. However, the strategy used by the offspring to survive within the host nest without being killed is still poorly documented. In cuckoo bumblebees, the parasite males completely lack the morphological and chemical adaptations to social parasitism that the females possess. Moreover, young parasite males exhibit an early production of species-specific cephalic secretions, used as sexual pheromones. Host workers might thus be able to recognize them. Here we used a bumblebee host-social parasite system to test the hypothesis that social parasite male offspring exhibit a chemical defense strategy to escape from host aggression during their intranidal life. Using behavioral assays, we showed that extracts from the heads of young cuckoo bumblebee males contain a repellent odor that prevents parasite males from being attacked by host workers. We also show that social parasitism reduces host worker aggressiveness and helps parasite offspring acceptance.  相似文献   

6.
Worker policing (mutual repression of reproduction) in the eusocial Hymenoptera represents a leading example of how coercion can facilitate cooperation. The occurrence of worker policing in “primitively” eusocial species with low mating frequencies, which lack relatedness differences conducive to policing, suggests that separate factors may underlie the origin and maintenance of worker policing. We tested this hypothesis by investigating conflict over male parentage in the primitively eusocial, monandrous bumblebee, Bombus terrestris. Using observations, experiments, and microsatellite genotyping, we found that: (a) worker‐ but not queen‐laid male eggs are nearly all eaten (by queens, reproductive, and nonreproductive workers) soon after being laid, so accounting for low observed frequencies of larval and adult worker‐produced males; (b) queen‐ and worker‐laid male eggs have equal viabilities; (c) workers discriminate between queen‐ and worker‐laid eggs using cues on eggs and egg cells that almost certainly originate from queens. The cooccurrence in B. terrestris of these three key elements of “classical” worker policing as found in the highly eusocial, polyandrous honeybees provides novel support for the hypothesis that worker policing can originate in the absence of relatedness differences maintaining it. Worker policing in B. terrestris almost certainly arose via reproductive competition among workers, that is, as “selfish” policing.  相似文献   

7.
Social parasitism is widespread in the eusocial insects. Although social parasites often show a reduced worker caste, unmated workers can also parasitize colonies. Cape honeybee workers, Apis mellifera capensis, can establish themselves as social parasites in host colonies of other honeybee subspecies. However, it is unknown whether social parasitism by laying workers also occurs among Cape honeybee colonies. In order to address this question we genotyped worker offspring of six queenless A. m. capensis colonies and determined the maternity of the reproducing workers. We found that three non-nestmate workers dominated reproduction in a host colony and produced 62.5% of the progeny. Our results show that social parasitism by laying workers is a naturally occurring part of the biology of Cape honeybees. However, such social parasitism is not frequently found (6.41% of the total worker offspring) probably due to co-evolutionary processes among A. m. capensis resulting in an equilibrium between selection for reproductive dominance in workers, colony maintenance and queen adaptation. Received 28 July 2005; revised 19 September and 11 November 2005; accepted 16 November 2005.  相似文献   

8.
Understanding the proximate mechanisms of caste development in eusocial taxa can reveal how social species evolved from solitary ancestors. In Polistes wasps, the current paradigm holds that differential amounts of nutrition during the larval stage cause the divergence of worker and gyne (potential queen) castes. But nutrition level alone cannot explain how the first few females to be produced in a colony develop rapidly yet have small body sizes and worker phenotypes. Here, we provide evidence that a mechanical signal biases caste toward a worker phenotype. In Polistes fuscatus, the signal takes the form of antennal drumming (AD), wherein a female trills her antennae synchronously on the rims of nest cells while feeding prey-liquid to larvae. The frequency of AD occurrence is high early in the colony cycle, when larvae destined to become workers are being reared, and low late in the cycle, when gynes are being reared. Subjecting gyne-destined brood to simulated AD-frequency vibrations caused them to emerge as adults with reduced fat stores, a worker trait. This suggests that AD influences the larval developmental trajectory by inhibiting a physiological element that is necessary to trigger diapause, a gyne trait.  相似文献   

9.
Understanding how a single genome can produce a variety of different phenotypes is of fundamental importance in evolutionary and developmental biology. One of the most striking examples of phenotypic plasticity is the female caste system found in eusocial insects, where variation in reproductive (queens) and non-reproductive (workers) phenotypes results in a broad spectrum of caste types, ranging from behavioural through to morphological castes. Recent advances in genomic techniques allow novel comparisons on the nature of caste phenotypes to be made at the level of the genes in organisms for which there is little genome information, facilitating new approaches in studying social evolution and behaviour. Using the paper wasp Polistes canadensis as a model system, we investigated for the first time how behavioural castes in primitively eusocial insect societies are associated with differential expression of shared genes. We found that queens and newly emerged females express gene expression patterns that are distinct from each other whilst workers generally expressed intermediate patterns, as predicted by Polistes biology. We compared caste-associated genes in P. canadensis with those expressed in adult queens and workers of more advanced eusocial societies, which represent four independent origins of eusociality. Nine genes were conserved across the four taxa, although their patterns of expression and putative functions varied. Thus, we identify several genes that are putatively of evolutionary importance in the molecular biology that underlies a number of caste systems of independent evolutionary origin.  相似文献   

10.
The cognitive challenges that social animals face depend on species differences in social organization and may affect mosaic brain evolution. We asked whether the relative size of functionally distinct brain regions corresponds to species differences in social behaviour among paper wasps (Hymenoptera: Vespidae). We measured the volumes of targeted brain regions in eight species of paper wasps. We found species variation in functionally distinct brain regions, which was especially strong in queens. Queens from species with open-comb nests had larger central processing regions dedicated to vision (mushroom body (MB) calyx collars) than those with enclosed nests. Queens from advanced eusocial species (swarm founders), who rely on pheromones in several contexts, had larger antennal lobes than primitively eusocial independent founders. Queens from species with morphologically distinct castes had augmented central processing regions dedicated to antennal input (MB lips) relative to caste monomorphic species. Intraspecific caste differences also varied with mode of colony founding. Independent-founding queens had larger MB collars than their workers. Conversely, workers in swarm-founding species with decentralized colony regulation had larger MB calyx collars and optic lobes than their queens. Our results suggest that brain organization is affected by evolutionary transitions in social interactions and is related to the environmental stimuli group members face.  相似文献   

11.
12.
Eusocial insects are those that show overlap of generations, cooperative brood care and reproductive caste differentiation. Of these, primitively eusocial insects show no morphological differences between reproductive and worker castes and exhibit considerable flexibility in the social roles that adult females may adopt. This makes them attractive model systems for investigations concerning the origin of eusociality. The rapidly accumulating information on primitively eusocial wasps suggests that haplodiploidy is unlikely to have an important role in the origin of eusociality. General kin selection (without help from haplodiploidy) could however have been an important factor due to the many advantages of group living. Pre-imaginal caste bias leading to variations in fertility is also likely to have some role. Because workers often have some chance of becoming reproductives in future, mutualism and other individual selection models suggest themselves as important factors. A hypothesis for the route to eusociality which focuses on the factors selecting for group living at different stages in social evolution is presented. It is argued that group living originates owing to the benefit of mutualism (the ‘Gambling Stage’) but parental manipulation and subfertility soon become important (the ‘Manipulation Stage’) and finally the highly eusocial state is maintained because genetic asymmetries created by haplodiploidy are exploited by kin recognition (the ‘Recognition Stage’).  相似文献   

13.
In eusocial Hymenoptera species, females variably develop into either alate females (queens) or workers, and in most cases, caste differentiation is determined environmentally. Recently, however, female castes in two harvester ant species, Pogonomyrmex rugosus and P. barbatus, were found to be determined genetically in hybrid zones of these two species. In the hybrid populations, homozygous females (e.g. AA or BB) and heterozygous females (AB) develop into alate females and workers, respectively. This genetic caste determination system is called symmetric social hybridogenesis (SSH). It is clear that populations with SSH can persist only if all four genotypes (AA and BB females, and A and B males) coexist simultaneously. However, it is not obvious that these populations are always persistent when the four genotypes simultaneously exist. Here, we examined the stability and persistence of an SSH population using a simple mathematical model. According to the analysis of the model, the SSH population persists only when some conditions are satisfied: (1) each female mates with more than two males, and (2) male production increases less steeply than linearly with increasing numbers of workers in a colony, and alate female production increases more steeply than linearly with increasing numbers of workers, or (2') male production increases more steeply than linearly with increasing numbers of workers in a colony, and alate female production increases much more steeply than male production. Therefore, it is not obvious that SSH populations are maintained and are stable for long periods. We discuss whether these conditions are satisfied in real SSH populations.  相似文献   

14.
The process of reproductive caste determination in eusocial insect colonies is generally understood to be mediated by environmental, rather than genetic factors. We present data demonstrating unexpected genetic differences between reproductive castes in a variant of the rough harvester ant, Pogonomyrmex rugosus var. fuscatus. Across multiple loci, queens were consistently more homozygous than expected, while workers were more heterozygous. Adult colony queens were divided into two highly divergent genetic groups, indicating the presence of two cryptic species, rather than a single population. The observed genetic differences between castes reflect differential representation of heterospecific and conspecific patrilines in these offspring groups. All workers were hybrids; by contrast, winged queens were nearly all pure-species. The complete lack of pure-species workers indicates a loss of worker potential in pure-species female offspring. Hybrids appear to be bipotential, but do not normally develop into reproductives because they are displaced by pure-species females in the reproductive pool. Genetic differences between reproductive castes are expected to be rare in non-hybridizing populations, but within hybrid zones they may be evolutionarily stable and thus much more likely to occur.  相似文献   

15.
The recently discovered social parasite Acromyrmex insinuator ( 25 ) exploits colonies of the leafcutter ant A. echinatior. We document that A. insinuator represents a rare early stage in the evolution of social parasitism, because a worker caste is still partially present and mating phenology has remained at least partially similar to that of the host. A. insinuator is tolerant of host queens, and sexual offspring produced in parasitized colonies can be either exclusively A. insinuator or a mix of A. insinuator and A. echinatior. The remarkably high abundance of A. insinuator in nests of the investigated Panamanian host population and the fact that A. insinuator colonies readily reproduce under laboratory conditions allowed us to test evolutionary predictions on reproductive life history evolution that are not possible in most other socially parasitic ants. We show that (1) A. insinuator has a semelparous ‘big bang’ reproductive life history which exploits host colonies without leaving reserves for survival; (2) social parasite sexuals are significantly smaller than A. echinatior host sexuals, but still large compared to host workers, confirming an evolutionary scenario of gradual size reduction and loss of the worker caste after transition towards a socially parasitic life history; (3) major changes in the life history of ants can evolve relatively quickly compared to adaptations in morphology, caste differentiation and mating phenology.  相似文献   

16.
We examined how dietary, social, and genetic factors affect individual size and caste in the Florida harvester ant Pogonomyrmex badius, which has three discrete female castes. The diet that a larva consumed, as indicated by delta(13)C, delta(15)N, and C:N, varied with caste. Both N content and estimated trophic position of dietary input was higher for major than for minor workers and was highest for gynes (reproductive females). The size and resources of a colony affected the size of only minor workers, not that of gynes and major workers. Approximately 19% of patrilines showed a bias in which female caste they produced. There were significant genetic effects on female size, and the average sizes of a major worker and a gyne produced by a patriline were correlated, but neither was correlated with minor worker size. Thus, genetic factors influence both caste and size within caste. We conclude that environmental, social, and genetic variation interact to create morphological and physiological variation among females in P. badius. However, the relative importance of each type of factor affecting caste determination is caste specific.  相似文献   

17.
The success of an ant colony depends on the simultaneous presence of reproducing queens and non-reproducing workers in a ratio that will maximize colony growth and reproduction. Despite its presumably crucial role, queen–worker caste ratios (the ratio of adult queens to workers) and the factors affecting this variable remain scarcely studied. Maintaining polygynous pharaoh ant (Monomorium pharaonis) colonies in the laboratory has provided us with the opportunity to experimentally manipulate colony size, one of the key factors that can be expected to affect colony level queen–worker caste ratios and body size of eclosing workers, gynes and males. We found that smaller colonies produced more new queens relative to workers, and that these queens and workers both tended to be larger. However, colony size had no effect on the size of males or on the sex ratio of the individuals reared. Furthermore, for the first time in a social insect, we confirmed the general life history prediction by Smith and Fretwell (Am Nat 108:499–506, 1974) that offspring number varies more than offspring size. Our findings document a high level of plasticity in energy allocation toward female castes and suggest that polygynous species with budding colonies may adaptively adjust caste ratios to ensure rapid growth.  相似文献   

18.
Asymmetries in genetic relatedness created by haplodiploidy have been considered to be crucially important for the evolution of worker behaviour in Hymenoptera. Multiple mating by the queens destroys this asymmetry and should make kin selection less powerful. The number of males that social insect queens mate with is thus of considerable theoretical interest especially in primitively eusocial species. The results presented here provide evidence for multiple mating by foundresses of the primitively eusocial waspRopalidia marginata (Lep.)  相似文献   

19.
In cooperatively breeding vertebrates, the existence of individuals that help to raise the offspring of non-relatives is well established, but unrelated helpers are less well known in the social insects. Eusocial insect groups overwhelmingly consist of close relatives, so populations where unrelated helpers are common are intriguing. Here, we focus on Polistes dominula—the best-studied primitively eusocial wasp, and a species in which nesting with non-relatives is not only present but frequent. We address two major questions: why individuals should choose to nest with non-relatives, and why such individuals participate in the costly rearing of unrelated offspring. Polistes dominula foundresses produce more offspring of their own as subordinates than when they nest independently, providing a potential explanation for co-founding by non-relatives. There is some evidence that unrelated subordinates tailor their behaviour towards direct fitness, while the role of recognition errors in generating unrelated co-foundresses is less clear. Remarkably, the remote but potentially highly rewarding chance of inheriting the dominant position appears to strongly influence behaviour, suggesting that primitively eusocial insects may have much more in common with their social vertebrate counterparts than has commonly been thought.  相似文献   

20.
A key feature of eusocial insects is their reproductive division of labour. The queen signals her fecundity to her potentially reproductive daughters via a pheromone, which renders them sterile. In contrast, solitary insects lack division in reproductive labour and there is no such social signalling or need for ovary‐regulating pheromones. Nonetheless, females from both non‐social and eusocial lineages are expected to regulate their ovaries to maximize inclusive lifetime reproductive success. It is not known, however, whether the underlying networks that regulate ovary activation are homologous between non‐social and eusocial taxa, especially when these taxa are phylogenetically distant. In this study, we provide evidence that solitary fruit flies may share a conserved ovary‐regulating pathway with a eusocial honey bee, Apis mellifera L. (Hymenoptera: Apidae). Specifically, we demonstrate that honey bee queen mandibular pheromone (QMP) inhibits fly ovaries in much the same way as it suppresses worker ovaries. Drosophila melanogaster Meigen (Diptera: Drosophilidae) exposed to sufficient doses of QMP showed a reduction in ovary size, produced fewer eggs, and generated fewer viable offspring, relative to unexposed controls. Drosophila melanogaster therefore responds to an interspecific social cue to which it would not normally be exposed. Although we cannot strictly rule out an incidental effect, this conspicuous response suggests that these two species may share an underlying mechanism for ovary regulation. Why a non‐social species of fly responds to a highly social bee's pheromone is not clear, but one possibility is that solitary and social insects share pathways associated with female reproduction, as predicted by the ‘groundplan’ hypothesis of social evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号