首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The plasminogen activator staphylokinase (SAK) is a promising thrombolytic agent for treatment of myocardial infarction. It can specifically stimulate the thrombolysis of both erythrocyte-rich and platelet-rich clots. However, SAK lacks fibrin-binding and thrombin inhibitor activities, two functions which would supplement and potentially improve its thrombolytic potency. Creating a recombinant fusion protein is one approach for combining protein domains with complementary functions. To evaluate SAK for use in a translational fusion protein, both N- and C-terminal fusions to SAK were constructed by using hirudin as a fusion partner. Recombinant fusion proteins were secreted from Bacillus subtilis and purified from culture supernatants. The rate of plasminogen activation by SAK was not altered by the presence of an additional N- or C-terminal protein sequence. However, cleavage at N-terminal lysines within SAK rendered the N-terminal fusion unstable in the presence of plasmin. The results of site-directed mutagenesis of lysine 10 and lysine 11 in SAK suggested that a plasmin-resistant variant cannot be created without interfering with the plasmin processing necessary for activation of SAK. Although putative plasmin cleavage sites are located at the C-terminal end of SAK at lysine 135 and lysine 136, these sites were resistant to plasmin cleavage in vitro. Therefore, C-terminal fusions represent stable configurations for developing improved thrombolytic agents based on SAK as the plasminogen activator component.  相似文献   

2.
Staphylokinase (SAK) is a promising thrombolytic agent for treating blood-clotting disorders. Recombinant SAK (rSAK) was produced after integration of the gene into Pichia pastoris genome. The recombinant Pichia carrying multiple insertions of the SAK gene yielded high-level (~1 g/l) of extracellular glycosylated rSAK (~18 kDa) with negligible plasminogen activation activity. Addition of tunicamycin during the induction phase resulted in expression of non-glycosylated and highly active rSAK (~15 kDa) from the same clone. Two simple steps of ion-exchange chromatography produced an homogenous rSAK of >95% purity which suitable for future structural and functional studies.  相似文献   

3.
Staphylokinase (SAK) as the third generation thrombolytic molecule is a promising agent for the treatment of thrombosis. SAK variant of SAKфC was expressed in Pichia pastoris strains KM71H and GS115. The codon adaptation index of SAK was improved from 0.75 to 0.89. The expression of recombinant SAK (rSAK) reached to its maximum (310?mg/L of the culture medium) after 48-hr stimulation with 3% methanol and remained steady until day 5. The maximum activity of the enzyme was at pH 8.6 and 37°C. It was highly active at temperatures 20–37°C and pH ranges of 6.8–9 (relative residual activity more than 80%). It was determined that rSAK was 73.8% of the total proteins secreted by P. pastoris KM71H into the culture media. The specific activities of rSAK were measured as 9,002 and 21,042?U/mg for the nonpurified and purified proteins, respectively. The quantity of the purified protein (>99% purity) was 720?µg/mL with a purification factor of 2.34. Western blot analysis showed two bands of nearly 22 and 18.6?kDa. It was concluded that P. pastoris is a proper host for expression of biologically active and endotoxin-free rSAK due to its high expression and low protein impurity in culture supernatant.  相似文献   

4.
[目的]为解决溶栓后再栓塞问题,构建N-端含RGD(Arg-Gly-Asp)序列的葡激酶双功能突变体.研究突变体的表达和纯化,并进行性质分析.[方法]将突变后的葡激酶突变体序列连入pBV220质粒,转化大肠杆菌BL21进行表达.阳离子交换、凝胶过滤和阴离子交换三步层析法纯化表达产物,采用溶圈法对纯化产物进行生物学活性测定,并测定纯化产物对血小板聚集的抑制效应.[结果]PAGE扫描结果显示,葡激酶突变体蛋白在大肠杆菌BL21中的表达量约占菌体蛋白总量的40%~50%;三步层析纯化后,HPLC测定其纯度可达95%.酪蛋白凝胶板溶圈法测得其比活性分别为10.8×104和11.0×104HU/mg,与野生型葡激酶活性相当;且具有明显的抗血小板聚集活性,血小板聚集仪测定其血小板聚集抑制率分别为10.72%和19.71%,明显高于野生型葡激酶血小板聚集抑制率.本实验利用pBV220载体高效表达了葡激酶突变体基因,得到了高纯度、高活性的突变体蛋白,为葡激酶生产产业化和临床应用奠定了良好的基础.  相似文献   

5.
Staphylokinase (SAK) is a promising thrombolytic agent for the treatment of patients suffering from blood-clotting disorders. To increase the potency of SAK and to minimize vessel reocclusion, a new construct bearing SAK motif fused to tsetse thrombin inhibitor (TTI) via a 20-amino acid linker with 2 RGD (2 × arginine-glycine-aspartic acid inhibiting platelet aggregation via attachment to integrin receptors of platelet) was codon optimized and expressed comparatively in Pichia pastoris GS115 as a Mut+ strain and KM71H as a Muts strain. Fusion protein was optimized in terms of best expression condition and fibrinolytic activity and compared with the rSAK. Expression level of the designed construct reached up to 175 mg/L of the culture medium after 72-hr stimulation with 2.5% methanol and remained steady for 3–4 days. The highest expression was obtained at the range of 2–3% methanol. The SAK-2RGD-TT (relative activity >82%) was more active at 25–37 °C than rSAK (relative activity of 93%). Further, it showed relative activity >80% at pH ranges of 7–9. Western blot analysis showed two bands of nearly 27 and 24 kDa at ratio of 5 to 3, respectively. The specific fibrinolytic activity of the SAK-2RGD-TTI was measured as 8,269 U/mg, and 19,616 U/mg for the nonpurified and purified proteins, respectively. Deglycosylation by using tunicamycin in culture medium resulted in higher fibrinolytic activity of SAK-2RGD-TTI (2.2 fold). Consequently, compared to the rSAK, at the same equimolar proportion, addition of RGD and TTI fragments could increase fibrinolytic activity. Also, P. pastoris can be considered as an efficient host for overexpression of the soluble SAK-2RGD-TTI with high activity without requiring a complicated purification procedure.  相似文献   

6.
Copolymers of N,N-diethylacrylamide and N-acryloylphthalimide with a lower critical solution temperature (LCST) were synthesized by radical copolymerization. Polymeric systems with antithrombin activity and an LCST were prepared via a reaction of amino groups of hirudin with phthalimide groups of the copolymers. On increasing hirudin content, the LCST of the polymeric systems increased. The antithrombin activity of polymeric systems obtained by hirudin immobilization on copolymer carriers was inversely related to the content of the copolymer, amounting to 6% of the activity of native hirudin.  相似文献   

7.
A recent NMR study of hirudin conformation in solution reveals a large extent of the tertiary structure of the inhibitor [2]. This model exhibits a highly packed core and two other extended wings-like domains. One of these domains centred at Gly (position 34) shows an accumulation of amino acid mutations, insertions, deletions located at an exposed position. This may represent evolutionary optimisation of the thrombin-binding site.  相似文献   

8.
重组葡激酶和水蛭素融合蛋白的血栓靶向性机制   总被引:1,自引:0,他引:1  
为解释以凝血因子Xa(FXa)的识别序列为连接肽的葡激酶和水蛭素的融合蛋白(命名为SFH)在体内的强溶栓和低出血的特征,研究分析了SFH的两个血栓靶向性作用机理.首先采用ELISA和免疫组化的方法在体外分析了由水蛭素游离的C末端赋予的SFH对血栓的靶向性,结果显示SFH对凝血酶和富含凝血酶的血栓具有更高的亲和力.为阐明SFH抗凝活性在血栓部位的靶向性释放,构建表达了仅在水蛭素N末端连接FXa识别序列的水蛭素衍生物(命名为FH).体外试验结果表明完整的FH无抗凝活性,在体内FH可以发挥抗栓作用,且出血副作用较低,这些结果说明FXa的识别序列可以封闭水蛭素的抗凝活性,在体内FH可以由于FXa的成功裂解而释放其抗凝活性,且其抗凝活性可能仅局限于血栓局部.这就间接说明了SFH的抗凝活性可以在血栓局部进行靶向性释放.以上两个血栓靶向性作用机理是SFH在体内发挥更高溶栓效率和降低出血副作用的重要机制.  相似文献   

9.
Staphylokinase (SAK) is reported to have a serine protease domain with no proteolytic activity unlike other plasminogen activators like tissue plasminogen activator (t-PA) and urokinase. A unique protease property of Staphylokinase was observed when SAK was expressed as a fusion protein in inducible Escherichia coli expression vectors. This finding was further investigated by cloning and expressing different SAK fusions, both native and N-terminal deletions, with fusion tags like glutathione S-transferase (GST) and signal sequence of SAK in bacterial system. While all the N-terminal SAK fusions were found to self-cleave in crude and purified preparations, the C-terminal SAK fusion was stable. The cleavage property of Staphylokinase fusion proteins, inhibited by reduced glutathione and PMSF, was independent of its thrombolytic activity and also independent on the type of host employed for its expression. The serine protease domain of the SAK gene possibly lies between 20th to 77th amino acid and serine 41 of this region appears critical for such a cleavage property.  相似文献   

10.
The acetate kinase from the Antarctic psychrophilic Shewanella sp. AS-11 (SAK) has a significantly higher catalytic efficiency at low temperatures when compared with that from mesophilic Escherichia coli K-12 (EAK). To examine the stability and conformational flexibility of SAK and EAK, steady state intrinsic fluorescence studies were performed. EAK contains only one Trp at a position 46, while SAK contains two Trps at positions 46 and 388. From the fluorescence emission spectra, quenching with acrylamide, Cs+ and I at different temperatures and denaturation with guanidine-HCl, it was revealed that the SAK bears more flexible and unstable structure than that of EAK. Substrate-induced conformational changes reflect that SAK reached transition state through more conformational changes than EAK. In combination of our thermodynamic studies on the enzymatic reaction and present research findings, it can be concluded that these structural features of SAK may contribute to its high catalytic efficiency at low temperatures.  相似文献   

11.
Staphylokinase (SAK) was produced inB. subtillis using two different promoter systems,i.e. the P43 andsacB promoters. To maximize SAK expression inB. subtilis, fermentation control strategies for each promoter were examined. SAK, under P43, a vegetative promoter transcribed mainly by σB containing RNA polymerase, was overexpressed at low dissolved oxygen (D.O.) levels, suggesting that thesigB operon is somewhat affected by the energy charge of the cells. The expression of SAK at the 10% D.O. level was three times higher than that at the 50% D.O. level. In the case ofsacB, a sucrose-inducible promoter, sucrose feeding was used to control the induction period and induction strength. Since sucrose is hydrolyzed by two sucrose hydrolyzing enzymes in the cell and culture broth, the control strategy was based on replenishing the loss of sucrose in the culture. With continuous feeding of sucrose, WB700 (pSAKBQ), which contains the SAK gene undersacB promoter, yieldedca. 35% more SAK than the batch culture. These results present efficient promoter-dependent control strategies inB. subtilis host system for foreign protein expression.  相似文献   

12.
Dahiya M  Rajamohan G  Dikshit KL 《FEBS letters》2005,579(7):1565-1572
Presence of isolated beta or betagamma domains of streptokinase (SK) increased the catalytic activity of staphylokinase (SAK)-plasmin (Pm) complex up to 60%. In contrast, fusion of SK beta or betagamma domains with the C-terminal end of SAK drastically reduced the catalytic activity of the activator complex. The enhancement effect mediated by beta or betagamma domain on Pg activator activity of SAK-Pm complex was reduced greatly (45%) in the presence of isolated kringles of Pg, whereas, kringles did not change cofactor activity of SAK fusion proteins (carrying beta or betagamma domains) significantly. When catalytic activity of SAK-microPm (catalytic domain of Pm lacking kringle domains) complex was examined in the presence of isolated beta and betagamma domains, no enhancement effect on Pg activation was observed, whereas, enzyme complex formed between microplasmin and SAK fusion proteins (SAKbeta and SAKbetagamma) displayed 50-70% reduction in their catalytic activity. The present study, thus, suggests that the exogenously present beta and betagamma interact with Pg/Pm via kringle domains and elevate catalytic activity of SAK-Pm activator complex resulting in enhanced substrate Pg activation. Fusion of beta or betagamma domains with SAK might alter these intermolecular interactions resulting in attenuated functional activity of SAK.  相似文献   

13.
Hirudin can be used as an oral anticoagulant and antithrombotic agent. The hirudin variant III gene, derived from the medicinal leech, Hirudo medicinalis, was fused to SP310mut2 signal sequence and expressed by a nisin-controlled gene expression system in Lactococcus lactis which was then grown in a 7 l fermenter. After induction with 8 ng nisin ml−1, the product was secreted into the culture medium and accumulated up to ~2.7 mg l−1. MALDI-TOF/MS and anticoagulant activity analyses on the purified product confirmed its authenticity. This is the first demonstration that hirudin can be extracellularly secreted and correctly processed in L. lactis.  相似文献   

14.
ABSTRACT The sex-age-kill (SAK) model is widely used to estimate abundance of harvested large mammals, including white-tailed deer (Odocoileus virginianus). Despite a long history of use, few formal evaluations of SAK performance exist. We investigated how violations of the stable age distribution and stationary population assumption, changes to male or female harvest, stochastic effects (i.e., random fluctuations in recruitment and survival), and sampling efforts influenced SAK estimation. When the simulated population had a stable age distribution and λ > 1, the SAK model underestimated abundance. Conversely, when λ < 1, the SAK overestimated abundance. When changes to male harvest were introduced, SAK estimates were opposite the true population trend. In contrast, SAK estimates were robust to changes in female harvest rates. Stochastic effects caused SAK estimates to fluctuate about their equilibrium abundance, but the effect dampened as the size of the surveyed population increased. When we considered both stochastic effects and sampling error at a deer management unit scale the resultant abundance estimates were within ±121.9% of the true population level 95% of the time. These combined results demonstrate extreme sensitivity to model violations and scale of analysis. Without changes to model formulation, the SAK model will be biased when λ ≠ 1. Furthermore, any factor that alters the male harvest rate, such as changes to regulations or changes in hunter attitudes, will bias population estimates. Sex-age-kill estimates may be precise at large spatial scales, such as the state level, but less so at the individual management unit level. Alternative models, such as statistical age-at-harvest models, which require similar data types, might allow for more robust, broad-scale demographic assessments.  相似文献   

15.
构建并表达兼有溶栓和抗凝活性、减少出血副作用的人组织型纤溶酶原激活剂(t-PA)和水蛭素(HV2)的融合蛋白。通过提取总RNA和RT-PCR获得t-PA基因,与HV2基因通过活化凝血因子X(Fxa)识别序列(IEGR)的对应碱基序列连接构成融合蛋白基因,融合蛋白基因经pGEM-T、pIC9克隆至表达载体pIC9K上,电转导入毕赤酵母(Pichia pastoris)GS115。转化子摇瓶内甲醇诱导表达。纤维蛋白平板溶圈法和纤维蛋白凝块法分别检测溶栓和抗凝活性。琼脂糖凝胶电泳结果显示克隆的t-PA基因片段大小为1700bp,序列测定结果表明其35位氨基酸由文献报道的精氨酸突变为色氨酸。限制性酶切和PCR鉴定结果均表明融合蛋白基因已克隆入表达载体和宿主菌。甲醇利用实验、G418抗性筛选获得多拷贝甲醇利用快型克隆。甲醇诱导表达产物具有纤溶活性并可被抗t-PA抗体抑制。完整融合蛋白无抗凝活性,但以Fxa裂解后可释放抗凝活性。同时,融合蛋白以单链和双链两种形式存在。融合蛋白在血栓部位特有的Fxa作用下靶向释放抗凝活性,具有溶栓抗凝双功能,有望降低临床出血副作用。  相似文献   

16.

Background  

Although staphylokianse (SAK) is among the most promising blood dissolving agents, it is far from ideal. It is interesting to hypothesize that the clot lysis efficacy of SAK can be enhanced with direct active platelet binding ability, and at the same time the rethrombosis complication after successful recanalization can be minimized with an antiplatelet aggregation activity. The present study was performed to characterize the functional properties of RGD-SAK, a novel mutant of staphylokinase (SAK).  相似文献   

17.
Synthesis and secretion of hirudin by Streptomyces lividans   总被引:2,自引:0,他引:2  
Summary To examine the secretory production of heterologous proteins by Streptomyces lividans, we fused the DNA encoding the signal peptide of the -amylase inhibitor tendamistat, derived from S. tendae with a synthetic gene encoding the thrombin inhibitor hirudin. The analysis of secretion by immunoblots revealed an efficient translocation of hirudin through the membrane, with no detectable immunoreaction among the cellular proteins. The secreted hirudin was stable in the shaking culture for about 6 days. A comparison of the hirudin secreted by S. lividans and recombinant reference hirudin from yeast by immunoblots and thrombin inhibition assays shows that hirudin from Streptomyces has a lower specific activity, which may be due to a different aminoterminal sequence or to inexact processing of the precursor.Offprint requests to: J. Engels  相似文献   

18.
Current clinically approved thrombolytic agents have significant drawbacks including reocclusion and bleeding complications. To address these problems, a staphylokinase-based thrombolytic agent equipped with antithrombotic activity from hirudin was engineered. Because the N termini for both staphylokinase and hirudin are required for their activities, a Y-shaped molecule is generated using engineered coiled-coil sequences as the heterodimerization domain. This agent, designated HE-SAKK, was produced and assembled from Bacillus subtilis via secretion using an optimized co-cultivation approach. After a simple in vitro treatment to reshuffle the disulfide bonds of hirudin, both staphylokinase and hirudin in HE-SAKK showed biological activities comparable with their parent molecules. This agent was capable of targeting thrombin-rich fibrin clots and inhibiting clot-bound thrombin activity. The time required for lysing 50% of fibrin clot in the absence or presence of fibrinogen was shortened 21 and 30%, respectively, with HE-SAKK in comparison with staphylokinase. In plasma clot studies, the HE-SAKK concentration required to achieve a comparable 50% clot lysis time was at least 12 times less than that of staphylokinase. Therefore, HE-SAKK is a promising thrombolytic agent with the capability to target thrombin-rich fibrin clots and to minimize clot reformation during fibrinolysis.  相似文献   

19.
Acetate kinase catalyzes the reversible magnesium-dependent phosphoryl transfer from ATP to acetate to form acetyl phosphate and ADP. Here, we report functional and some structural properties of cold-adapted psychrotrophic enzyme; acetate kinase with those from mesophilic counterpart in Escherichia coli K-12. Recombinant acetate kinase from Shewanella sp. AS-11 (SAK) and E. coli K-12 (EAK) were purified to homogeneity following affinity chromatography and followed by Super Q column chromatography as reported before [44]. Both purified enzymes are shared some of the common properties such as (similar molecular mass, amino acid sequence and similar optimum pH), but characterized shift in the apparent optimum temperature of specific activity to lower temperature as well as by a lower thermal stability compared with EAK. The functional comparisons reveal that SAK is a cold adapted enzyme, having a higher affinity to acetate than EAK. In the acetyl phosphate and ADP-forming direction, the catalytic efficiency (k cat/K m) for acetate was 8.0 times higher for SAK than EAK at 10 °C. The activity ratio of SAK to EAK was increased with decreasing temperature in both of the forward and backward reactions. Furthermore, the activation energy, enthalpy and entropy in both reaction directions that catalyzed by SAK were lower than those catalyzed by EAK. The model structure of SAK showed the significantly reduced numbers of salt bridges and cation-pi interactions as compared with EAK. These results suggest that weakening of intramolecular electrostatic interactions of SAK is involved in a more flexible structure which is likely to be responsible for its cold adaptation.  相似文献   

20.
Recently we described a novel bacteriophage-encoded pathogenicity island in Staphylococcus aureus that harbors a number of virulence factors that are all involved in the evasion of innate immunity. Here we describe a mechanism by which staphylokinase (SAK), frequently present on this pathogenicity island, interferes with innate immune defenses: SAK is anti-opsonic. By activating human plasminogen (PLG) into plasmin (PL) at the bacterial surface, it creates bacterium-bound serine protease activity that leads to degradation of two major opsonins: human immunoglobulin G (IgG) and human C3b. Incubation of opsonized bacteria with PLG and SAK resulted in removal of anti-staphylococcal IgGs and C3b from the bacterial surface. In phagocytosis assays this proved to be a very efficient mechanism to reduce the opsonic activity of human IgG and serum. The fact that SAK activates human PLG at the bacterial surface and removes IgG as well as C3b makes this protein a unique anti-opsonic molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号