首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI) network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks.  相似文献   

2.

Background  

Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements.  相似文献   

3.

Background  

Complex networks are studied across many fields of science and are particularly important to understand biological processes. Motifs in networks are small connected sub-graphs that occur significantly in higher frequencies than in random networks. They have recently gathered much attention as a useful concept to uncover structural design principles of complex networks. Existing algorithms for finding network motifs are extremely costly in CPU time and memory consumption and have practically restrictions on the size of motifs.  相似文献   

4.
A new dynamical layout algorithm for complex biochemical reaction networks   总被引:1,自引:0,他引:1  

Background  

To study complex biochemical reaction networks in living cells researchers more and more rely on databases and computational methods. In order to facilitate computational approaches, visualisation techniques are highly important. Biochemical reaction networks, e.g. metabolic pathways are often depicted as graphs and these graphs should be drawn dynamically to provide flexibility in the context of different data. Conventional layout algorithms are not sufficient for every kind of pathway in biochemical research. This is mainly due to certain conventions to which biochemists/biologists are used to and which are not in accordance to conventional layout algorithms. A number of approaches has been developed to improve this situation. Some of these are used in the context of biochemical databases and make more or less use of the information in these databases to aid the layout process. However, visualisation becomes also more and more important in modelling and simulation tools which mostly do not offer additional connections to databases. Therefore, layout algorithms used in these tools have to work independently of any databases. In addition, all of the existing algorithms face some limitations with respect to the number of edge crossings when it comes to larger biochemical systems due to the interconnectivity of these. Last but not least, in some cases, biochemical conventions are not met properly.  相似文献   

5.

Background  

Localized network patterns are assumed to represent an optimal design principle in different biological networks. A widely used method for identifying functional components in biological networks is looking for network motifs – over-represented network patterns. A number of recent studies have undermined the claim that these over-represented patterns are indicative of optimal design principles and question whether localized network patterns are indeed of functional significance. This paper examines the functional significance of regulatory network patterns via their biological annotation and evolutionary conservation.  相似文献   

6.

Background  

Networks are widely recognized as key determinants of structure and function in systems that span the biological, physical, and social sciences. They are static pictures of the interactions among the components of complex systems. Often, much effort is required to identify networks as part of particular patterns as well as to visualize and interpret them.  相似文献   

7.

Background  

Protein-protein interactions (PPIs) play fundamental roles in nearly all biological processes, and provide major insights into the inner workings of cells. A vast amount of PPI data for various organisms is available from BioGRID and other sources. The identification of communities in PPI networks is of great interest because they often reveal previously unknown functional ties between proteins. A large number of global clustering algorithms have been applied to protein networks, where the entire network is partitioned into clusters. Here we take a different approach by looking for local communities in PPI networks.  相似文献   

8.

Background  

Classification procedures are widely used in phylogenetic inference, the analysis of expression profiles, the study of biological networks, etc. Many algorithms have been proposed to establish the similarity between two different classifications of the same elements. However, methods to determine significant coincidences between hierarchical and non-hierarchical partitions are still poorly developed, in spite of the fact that the search for such coincidences is implicit in many analyses of massive data.  相似文献   

9.
10.

Background  

The elucidation of whole-cell regulatory, metabolic, interaction and other biological networks generates the need for a meaningful ranking of network elements. Centrality analysis ranks network elements according to their importance within the network structure and different centrality measures focus on different importance concepts. Central elements of biological networks have been found to be, for example, essential for viability.  相似文献   

11.

Background  

Identifying candidate genes in genetic networks is important for understanding regulation and biological function. Large gene expression datasets contain relevant information about genetic networks, but mining the data is not a trivial task. Algorithms that infer Bayesian networks from expression data are powerful tools for learning complex genetic networks, since they can incorporate prior knowledge and uncover higher-order dependencies among genes. However, these algorithms are computationally demanding, so novel techniques that allow targeted exploration for discovering new members of known pathways are essential.  相似文献   

12.

Background  

The prediction of essential genes from molecular networks is a way to test the understanding of essentiality in the context of what is known about the network. However, the current knowledge on molecular network structures is incomplete yet, and consequently the strategies aimed to predict essential genes are prone to uncertain predictions. We propose that simultaneously evaluating different network structures and different algorithms representing gene essentiality (centrality measures) may identify essential genes in networks in a reliable fashion.  相似文献   

13.

Background

Despite the recognized importance of module discovery in biological networks to enhance our understanding of complex biological systems, existing methods generally suffer from two major drawbacks. First, there is a focus on modules where biological entities are strongly connected, leading to the discovery of trivial/well-known modules and to the inaccurate exclusion of biological entities with subtler yet relevant roles. Second, there is a generalized intolerance towards different forms of noise, including uncertainty associated with less-studied biological entities (in the context of literature-driven networks) and experimental noise (in the context of data-driven networks). Although state-of-the-art biclustering algorithms are able to discover modules with varying coherency and robustness to noise, their application for the discovery of non-dense modules in biological networks has been poorly explored and it is further challenged by efficiency bottlenecks.

Methods

This work proposes Biclustering NETworks (BicNET), a biclustering algorithm to discover non-trivial yet coherent modules in weighted biological networks with heightened efficiency. Three major contributions are provided. First, we motivate the relevance of discovering network modules given by constant, symmetric, plaid and order-preserving biclustering models. Second, we propose an algorithm to discover these modules and to robustly handle noisy and missing interactions. Finally, we provide new searches to tackle time and memory bottlenecks by effectively exploring the inherent structural sparsity of network data.

Results

Results in synthetic network data confirm the soundness, efficiency and superiority of BicNET. The application of BicNET on protein interaction and gene interaction networks from yeast, E. coli and Human reveals new modules with heightened biological significance.

Conclusions

BicNET is, to our knowledge, the first method enabling the efficient unsupervised analysis of large-scale network data for the discovery of coherent modules with parameterizable homogeneity.
  相似文献   

14.

Background  

Graph-based pathway ontologies and databases are widely used to represent data about cellular processes. This representation makes it possible to programmatically integrate cellular networks and to investigate them using the well-understood concepts of graph theory in order to predict their structural and dynamic properties. An extension of this graph representation, namely hierarchically structured or compound graphs, in which a member of a biological network may recursively contain a sub-network of a somehow logically similar group of biological objects, provides many additional benefits for analysis of biological pathways, including reduction of complexity by decomposition into distinct components or modules. In this regard, it is essential to effectively query such integrated large compound networks to extract the sub-networks of interest with the help of efficient algorithms and software tools.  相似文献   

15.

Background  

Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks.  相似文献   

16.

Background  

The increasing availability of models and data for metabolic networks poses new challenges in what concerns optimization for biological systems. Due to the high level of complexity and uncertainty associated to these networks the suggested models often lack detail and liability, required to determine the proper optimization strategies. A possible approach to overcome this limitation is the combination of both kinetic and stoichiometric models. In this paper three control optimization methods, with different levels of complexity and assuming various degrees of process information, are presented and their results compared using a prototype network.  相似文献   

17.

Background  

The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes.  相似文献   

18.

Background  

A common method for presenting and studying biological interaction networks is visualization. Software tools can enhance our ability to explore network visualizations and improve our understanding of biological systems, particularly when these tools offer analysis capabilities. However, most published network visualizations are static representations that do not support user interaction.  相似文献   

19.

Background

With ever increasing amount of available data on biological networks, modeling and understanding the structure of these large networks is an important problem with profound biological implications. Cellular functions and biochemical events are coordinately carried out by groups of proteins interacting each other in biological modules. Identifying of such modules in protein interaction networks is very important for understanding the structure and function of these fundamental cellular networks. Therefore, developing an effective computational method to uncover biological modules should be highly challenging and indispensable.

Results

The purpose of this study is to introduce a new quantitative measure modularity density into the field of biomolecular networks and develop new algorithms for detecting functional modules in protein-protein interaction (PPI) networks. Specifically, we adopt the simulated annealing (SA) to maximize the modularity density and evaluate its efficiency on simulated networks. In order to address the computational complexity of SA procedure, we devise a spectral method for optimizing the index and apply it to a yeast PPI network.

Conclusions

Our analysis of detected modules by the present method suggests that most of these modules have well biological significance in context of protein complexes. Comparison with the MCL and the modularity based methods shows the efficiency of our method.
  相似文献   

20.

Background  

With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号