首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many spiralian embryos it has been possible to demonstratethat embryonic development is partially controlled by cytoplasmicfactors located at or in the surface of the fertilized egg andcleaving embryo. In the embryo of the squid Loligo pealei, apattern of developmental information can be demonstrated toexist at the surface, or the egg cortex, of the fertilized butuncleaved embryo. The informational pattern apparently is releasedor activated during the time of the cytoplasmic streaming whichforms the blastodisc. Eventually this developmental informationalpattern is imposed upon the blastoderm cells that come to coverorgan-specific regions of the yolk syncytium which was derivedfrom the egg cortex. Ultrastructural studies demonstrate manyintercellular connections between the yolk syncytium and theblastoderm and between the cells of the blastoderm itself. Duringoogenesis there are regional differences in the follicular syncytiumwhich suggests that the pattern of developmental informationmay arise in the ovary and be retained in a latent state untiltriggered by fertilization.  相似文献   

2.
Dye coupling and cell lineages of blastomeres that participate in the formation of the yolk syncytial layer (YSL) in the zebrafish Brachydanio rerio have been examined. The YSL is a multinucleate layer of nonyolky cytoplasm underlying the cellular blastoderm at one pole of the giant yolk cell. It forms at the time of the 10th (sometimes 9th) cleavage by a collapse of a set of blastomeres, termed marginal blastomeres, into the yolk cell. Marginal blastomeres possess cytoplasmic bridges to the yolk cell before the YSL forms, and injections of fluorescein-dextran into the cells revealed that bridges between the yolk cell and blastoderm do not persist after this time. Injections of Lucifer yellow revealed that shortly after the YSL forms the yolk cell and blastoderm are dye coupled, presumably by gap junctions, and that this coupling disappears gradually during early gastrulation. Lineage analyses revealed that not all of the progeny of early marginal blastomeres participate in YSL formation. Although some descendants of marginal blastomeres remained on the margin during successive cleavages, neither "compartment" nor "strict lineage" models are sufficient to explain the origin of the YSL. It is proposed that the position of a cell on the blastoderm margin, and not the cell's lineage, determines YSL cell fate.  相似文献   

3.
Portions the size of 1/6 to 1/32 part of unincubated blastoderm cultured in an albumen-salineagar solid medium form erythroid cells under conditions which suppress normal co-ordinated movements for mesoderm induction. Anterior and posterior regions of unincubated blastoderm have the same potentiality to form erythroid cells. The marginal zone seems to be the contributor of prospective erythroid cells. Portion 1/16 part of unincubated blastoderm forms morphologically distinct erythroid cells of the primitive and definitive lines as in normal development in ovo. It seems progenitor cell(s) is pre-programmed to a particular pattern of differentiation and/or includes differentiation to various erythroid cell types as an obligatory step. This system provides novel experimental possibilities in the study of erythroid cell determination and differentiation.  相似文献   

4.
In the earliest stages of its development the chick blastoderm is a flattened disc at the surface of the yolk. It gradually increases in diameter, partially because the cells are rapidly proliferating, but also because the cells at the periphery (the margin of overgrowth) are migrating in a centrifugal direction. These cells utilize the inner surface of the vitelline membrane as their substratum. In the normal blastoderm, these cells at the edge of the spreading blastoderm are the only cells which are attached to the vitelline membrane. This investigation is concerned with the possible role played by fibronectin in the interaction between these migrating cells and the vitelline membrane. Chick blastoderms, explanted by the New (1955) technique have been treated with synthetic peptides that mimic the adhesive recognition signal of the fibronectin molecule. The pentapeptide GRGDS (containing the specific RGD cell adhesion sequence) caused the edge cells of the blastoderm to detach within minutes, and the expansion of the blastoderm was inhibited for about 4 hr. After this period there was gradual recovery and the cells reattached and spreading resumed. Examination of the margin of the blastoderm by scanning electron microscopy showed that cell processes were lost soon after treatment with GRGDS but concomitant with reattachment and the resumption of spreading, the cell processes reformed. The pentapeptide GRDGS (with the amino acids G and D inverted) produced a brief inhibition of spreading, but after an hour these blastoderms spread at the same rate as controls. Immunocytochemical staining with anti-fibronectin demonstrated that fibronectin was not only present at the interface of the edge cells and the vitelline membrane, but also between the epiblast and the hypoblast. These results indicate that tissue movement during blastoderm spreading is dependent upon fibronectin and that the specific RGD amino acid sequence, and presumably the VLA/integrin family of receptors, is involved in this embryonic morphogenetic movement.  相似文献   

5.
The youngest primordial germ cells (PGCs) of Allacma fusca (L.) (Collembola: Sminthuridae) can be identified in embryos at the blastoderm stage as scattered in the yolk mass. They are arranged in pairs connected via intercellular bridges and dispersed among the yolk granules over a relatively small area but they never form multicellular clusters. With progressing development, the mesoderm of the germ band differentiates, the PGCs migrate to the abdominal part of the germ band and enter among mesoderm cells making two clusters of cells in the left and right parts of the abdomen. The mesoderm cells neighbouring the PGC cluster differentiate into a one-layered gonad envelope and produce a thin basal lamina separating the gonad from the rest of the mesoderm. The PGCs are still connected in pairs. At the end of the embryonic development, the gonads have regular spherical shapes and are enclosed within the envelope built up by a layer of flat somatic cells. Now, the PGCs do not occur only in pairs, but chains of cells connected with a sequence of intercellular bridges can also be seen.  相似文献   

6.
Summary Protein synthesis in egg follicles and blastoderm embryos ofDrosophila melanogaster has been studied by means of two-dimensional gel electrophoresis. Up to 400 polypeptide spots have been resolved on autoradiographs. Stage 10 follicles (for stages see King, 1970) were labelled in vitro for 10 to 60 min with35S-methionine and cut with tungsten needles into an anterior fragment containing the nurse cells and a posterior fragment containing the oocyte and follicle cells. The nurse cells were found to synthesize a complex pattern of proteins. At least two proteins were detected only in nurse cells but not in the oocyte even after a one hour labelling period. Nurse cells isolated from stages 9, 10 and 12 follicles were shown to synthesize stage specific patterns of proteins. Several proteins are synthesized in posterior fragments of stage 10 follicles but not in anterior fragments. These proteins are only found in follicle cells. No oocyte specific proteins have been detected. Striking differences between the protein patterns of anterior and posterior fragments persist until the nurse cells degenerate. In mature stage 14 follicles, labelled in vivo, no significant differences in the protein patterns of isolated anterior and posterior fragments could be detected; this may be due to technical limitations. At the blastoderm stage localized synthesis of specific proteins becomes detectable again. When blastoderm embryos, labelled in vivo, are cut with tungsten needles and the cells are isolated from anterior and posterior halves, differences become apparent. The pole cells located at the posterior pole are highly active in protein synthesis and contribute several specific proteins which are found exclusively in the posterior region of the embryo. In this study synthesis of specific proteins could only be demonstrated at those developmental stages which are characterized by the presence of different cell types within the egg chamber, while no differences were detected when stage 14 follicles were cut and anterior and posterior fragments analyzed separately. The differences in the pattern of protein synthesis by pole cells and blastoderm cells indicate that even the earliest stages of determination are reflected by marked changes at the biochemical level.  相似文献   

7.
Cells from Early Chick Embryos in Culture   总被引:2,自引:0,他引:2  
Just prior to streak formation (Stage XIII) the two layered chick blastoderm is formed by the one layer epiblast which needs the influence of the hypoblastic layer to develop an embryonic axis. A study has been made of this latest possible stage in the development of the chick in which one cell population, the epiblast, is still totipotential. The intention being to examine in particular the differentiation capacities of these cells in culture and at the same time to compare them with hypoblastic cells. In studying differentiation we have attempted to minimize heterogeneity of the starting cell population by culturing either hypoblastic cells or epiblastic cells. The epiblastic cells were derived from epiblasts deprived of the marginal zone and of the area opaca. Hypoblastic cells formed a one cell thick characteristic epithelium. Epiblastic cells in culture were found to evolve from a homogenous sheet to clearly demarcated areas to dome structures which resemble embryoid bodies from teratocarcinomas. Histologically three main tissue types were found in the epiblastic cultures. Sometimes the borderline between two of the tissue types was found to be clearly demarcated by a basement membrane. Both hypoblastic and epiblastic cells produced a basement membrane-like structure when cultured in vitro. The appearance of mesoderm in the epiblastic cultures was particularly interesting and it was evident by the appearance of blood islands and clearly defined endothelial-lined cavities. No complex organized embryonic structures of any kind were found in the cultures.  相似文献   

8.
In teleosts, haploidy has been considered to be inviable due to the expression of abnormalities during embryogenesis, but the recent report of live haploid-diploid mosaic fish suggests the probable improvement of survival capacity by adding diploid cells or tissues to haploid embryos. In order to examine such possibilities, two types of haploid-diploid goldfish chimeric embryos were produced by transplantation of blastoderm between the normally fertilized diploid and the artificially induced gynogenetic haploid: the haploid-base chimera with the diploid upper half on the haploid lower half blastoderm and the diploid-base chimera with the haploid upper half on the diploid lower half blastoderm. Fluorescent detection of FITC-labeled cells, subsequent histochemical detection of biotin-labeled haploid cells and flow-cytometrical detection of both haploid and diploid cells proved successful induction of the haploid-diploid chimera. Both types of chimeric embryos demonstrated much better survival capacity than pure haploid individuals, but all the haploid-base chimeras died before 10 days after fertilization due to the expression of edema, whereas several diploid-base chimeras survived until 16 months after fertilization when the experiment was ended. This concluded diploid-base chimeras became viable by adding diploid cells to haploid embryos. However, the proportion of transplanted haploid cells was reduced and the distribution of these cells was limited to certain organs because survivors exhibited haploid cells only in brain, eye and/or skin. These results suggest possible elimination of haploid cells from the organs originated from ectoderm.  相似文献   

9.
Baker WK 《Genetics》1978,88(4):743-754
A gynandromorph fate map of the head of D. melanogaster was produced using 28 landmarks derived from one imaginal disc. An examination of the meaning of fine-structure mapping discloses that the sturt value observed between one pair of landmarks within a disc may approximate the relative physical distance of their progenitor cells at blastoderm, but for another pair of landmarks (assuming no directed cell movements), the sturt value may simply reflect their close geographic location at the time the cells are specified for their particular differentiation, a time much later in development when most cell division within the disc has come to an end. The formation of early developmental compartments has little effect on fate-map distances. Our analysis of the data suggests there are approximately ten cells present at the blastoderm stage that are head progenitors. Each blastoderm cell is likely to be the progenitor of a particular array of landmarks, but there is overlap between arrays from different blastoderm cells.  相似文献   

10.
11.
Cleavage and blastoderm formation in Coelopa frigida are extremely rapid developmental processes. In short (6–7 minutes) successive cell cycles, nuclei multiply and spread out through the egg. The movement seems to be aided by endoplasmic vesicles and cisternae which are in direct contact with the nuclear membrane. The first cells to separate from the egg plasmodium in early superficial cleavage stages are the pole cells. Precursor material from multivesicular bodies forms the pole cell membranes. The primary nuclei from the posterior pole region are removed from the blastoderm by the pole cell segregation. Blastoderm nuclei from the regions adjacent to the posterior pole migrate into the residual periplasm after pole cell segregation has been completed and constitute the blastoderm nuclei in that region of the egg. Nucleoli are not revealed during internal cleavage. They appear in pole cells shortly after their segregation. The generation time of the blastoderm nuclei increases after the twelfth cleavage. Concurrently, nucleoli form in the blastoderm nuclei and permanent cell membranes separate individual blastoderm cells. After blastoderm cells have been separated from each other, they remain in contact with the interior yolk sac by means of cytoplasmic canals. This contact is maintained at least during the early phases of blastokinesis. Observations on nuclear migration and rapid membrane formation are discussed as examples of protein assembly from subunits as an alternative to de novo protein synthesis in early stages of development.  相似文献   

12.
The exponential growth and cell population during the early embryogenesis of chick, cultured in vitro correlates with a linear increase in the blastoderm area. To understand the relationship between these parameters and normal morphogenesis, we have used a known teratogen, trypan blue, as a probe. A method is developed in which each new embryonic structure is assigned a rank value of 1 and the total number of ranks allows quantification of development and establishment of a numerical relationship between the size of the cell population, blastoderm area and the morphological development. The teratogen inhibits cell population growth, morphogenetic movements and shaping of organ primordia, but not the epiboly and differentiation of cells which have already invaginated and positioned during primitive streak formation. In contrast, the cell population growth, but not the blastoderm area-expansion, is correlated with the extent of abnormal development. A graphic analysis of the rank order, log cell number and blastoderm area reveals that these three parameters coordinately regulate morphogenesis. It is suggested that head fold formation is the key event regulating the progress of early morphogenesis.  相似文献   

13.
A previous electron microscopic study of the cat testis revealed that spermatids derived from the same spermatogonium are joined together by intercellular bridges. The present paper records the observation of similar connections between spermatocytes and between spermatids in Hydra, fruit-fly, opossum, pigeon, rat, hamster, guinea pig, rabbit, monkey, and man. In view of these findings, it is considered likely that a syncytial relationship within groups of developing male germ cells is of general occurrence and is probably responsible for their synchronous differentiation. When clusters of spermatids, freshly isolated from the germinal epithelium are observed by phase contrast microscopy, the constrictions between the cellular units of the syncytium disappear and the whole group coalesces into a spherical multinucleate mass. The significance of this observation in relation to the occurrence of abnormal spermatozoa in semen and the prevalence of multinucleate giant cells in pathological testes is discussed. In the ectoderm of Hydra, the clusters of cnidoblasts that arise from proliferation of interstitial cells are also connected by intercellular bridges. The development of nematocysts within these groups of conjoined cells is precisely synchronized. Both in the testis of vertebrates and the ectoderm of Hydra, a syncytium results from incomplete cytokinesis in the proliferation of relatively undifferentiated cells. The intercellular bridges between daughter cells are formed when the cleavage furrow encounters the spindle remnant and is arrested by it. The subsequent dissolution of the spindle filaments establishes free communication between the cells. The discovery of intercellular bridges in the two unrelated tissues discussed here suggests that a similar syncytial relationship may be found elsewhere in nature where groups of cells of common origin differentiate synchronously.  相似文献   

14.
Blastodermal chimeras were constructed by transferring quail cells to chick blastoderm. Contribution of donor cells to host were histologically analyzed utilizing an in situ cell marker. Of the embryos produced by injection of stage XI-XIII quail cells into stage XI-2 chick blastoderm, more than 50 percent were definite chimeras. The restriction on the spatial arrangement of donor cells was induced by varying the stage of host. Ectodermal chimerism was limited to the head region and no mesodermal chimerism was shown when the quail cells were injected into stage XI-XIII blastoderm. Mesodermal and ectodermal chimerisms were limited to the trunk, not to the head region, when the quail cells were injected into the stage XIV-2 blastoderm. In these chimeras, however, some of the injected quail cells formed ectopic epidermal cysts. Consequently, the stage XIV-2 blastoderm may become intolerant of the injected cells. Our results suggest that it is possible to obtain chimeras that have chimerism limited to a particular germ layer and region by varying the stage of donor cell injection. Injected quail cells contributed to endodermal tissues and primordial germ cells regardless of the injection site. The quail-chick blastodermal chimeras could be useful in the production of a transgenic chicken and in the investigation of immunological tolerance.  相似文献   

15.
Summary Intercellular bridges have been detected in ovarian follicle cells of Drosophila melanogaster. These bridges occur widely between follicle cells of previtellogenic chambers, while, in vitellogenic chambers, they become restricted to the columnar follicle cells. Usually, only one bridge is detectable between adjacent follicle cells, but a single cell may form two cytoplasmic continuities.The fine structure of the intercellular bridges is similar to that previously described in the development of Drosophila. The bridge wall consists of two layers of which the more external is more electron dense and thinner than the inner one.The role played by the intercellular bridges in the determination of a synchronous differentiation of the linked follicle cells is discussed in relation to the known behaviour of these cells in the secretion of the egg covering precursors.  相似文献   

16.
Summary The synthesis of a protein which has been detected in blastoderm cells but not in pole cells (Gutzeit and Gehring 1979) has been studied further by means of two-dimensional gel electrophoresis. This protein could not be detected at the nuclear multiplication stage. The protein is translated from mRNA which is transcribed at the blastoderm stage since it is not synthesized in detectable amounts when embryos are injected with -amanitin prior to the blastoderm stage. Also the protein could not be detected when RNA from freshly laid eggs was translated in vitro. Embryos from females which are homozygous for the mutationmat (3) 1 form pole cells but no blastoderm cells (Rice and Garen 1975). Thesemat (3) 1 embryos, as we will call them in this report, express the protein if aged for a period of time sufficient for completion of blastoderm cell formation in control wild-type embryos.mat (3) 1 embryos and embryos injected with -amanitin show the same syndrome of visible developmental anomalies; however, the studied protein could only be detected inmat (3) 1 embryos but not in -amanitin injected embryos.Supported by the DFG, SFB 46  相似文献   

17.
The disposal and more efficient utilization of marine wastes is becoming increasingly serious. A culture media for microorganisms has been prepared from squid internal organs that are rich in polyunsaturated fatty acids (PUFAs). Both freshwater and marine bacteria grew well in this medium and some bacteria accumulated PUFAs in their lipids, suggesting uptake of exogenous PUFAs. Higher PUFA accumulations were observed in Escherichia coli mutant cells defective either in unsaturated fatty acid biosynthesis or fatty acid degradation, or both, compared to those without these mutations. Therefore, PUFA accumulation in cells can be improved by genetic modification of fatty acid metabolism in the bacteria. Squid internal organs would be a good source of medium, not only for marine bacteria but also for freshwater bacteria, and that this process may be advantageous to make efficient use of the fishery wastes and to produce PUFA-containing microbial cells and lipids.  相似文献   

18.
Cells prepared from 1-day-old chick blastoderms were infected with a temperature-sensitive mutant of avian erythroblastosis virus ( ts AEV). Clonal strains of transformed erythroblasts were isolated from the infected blastoderm cells. By shift to the nonpermissive temperature, these cells could be induced to differentiate into erythrocyte-like cells which expressed embryonic haemoglobins. Embryonic haemoglobins could not be detected in ts AEV-transformed erythroblasts from adult bone marrow when induced to differentiate under the same conditions. In contrast to normal primitive erythrocytes, ts AEV-infected embryonic erythroblasts differentiated in vitro expressed also adult haemoglobin. These results suggest an influence of the haematopoietic environment on the switch from embryonic to adult erythrocytes.  相似文献   

19.
Cultured rat embryo cells were stimulated to rapidly release a small group of proteins that included several heat-shock proteins (hsp110, hsp71, hscp73) and nonmuscle actin. The extracellular proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis. Heat-shocked cells released the same set of proteins as control cells with the addition of the stress-inducible hsp110 and hsp71. Release of these proteins was not blocked by either monensin or colchicine, inhibitors of the common secretory pathway. A small amount of the glucose-regulated protein grp78 was externalized by this pathway. The extracellular accumulation of these proteins was inhibited after they were synthesized in the presence of the lysine analogue aminoethyl cysteine. It is likely that the analogue-substituted proteins were misfolded and could not be released from cells, supporting our conclusion that a selective release mechanism is involved. Remarkably, actin and the squid heat-shock proteins homologous to rat hsp71 and hsp110 are also among a select group of proteins transferred from glial cells to the squid giant axon, where they have been implicated in neuronal stress responses (Tytell et al.: Brain Res., 363:161-164, 1986). Based in part on the similarities between these two sets of proteins, we hypothesized that these proteins were released from labile cortical regions of animal cells in response to perturbations of homeostasis in cells as evolutionarily distinct as cultured rat embryo cells and squid glial cells.  相似文献   

20.
SYNOPSIS. In this review we describe data of experiments whichinterfere with the formation of the metameric pattern duringembryogenesis. Ligating embryos before blastoderm stage leadsto a gap in the segmentation pattern of the differentiated embryo.The gap can extend up to 6 segments but terminal segments arealways recognizable. In posterior but not in anterior fragmentswe find abnormally large but fewer segments. This increase insegment size results from a different determination of blastodermcells after ligation. During nuclear multiplication stages whena gap can be produced, the zygotic genome is not yet active.Information to develop the metameric pattern in ligated embryosmust therefore have been made during oogenesis. Recently Nüisslein-Volhard and Wieschaus (1980) have describedthree zygotic mutations which form embryos with a gap of segmentssimilar to our ligated embryos. We have discussed these mutantphenotypes in connection with our experimental data. Segmentation is controlled at several levels. During oogenesisthe anterior-posterior and dorsal-ventral axes become established(Nüsslein-Volhard, 1979). Also during oogenesis, but extendinginto early embryonic life, information is generated to subdividethe embryo into blocks of cells forming the metameric pattern.At blastoderm the identity of segments becomes established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号