首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport   总被引:2,自引:0,他引:2  
The effects of the polyamine spermine on the regulation of Ca2+ transport by subcellular organelles from rat liver, heart, and brain were investigated using ion-sensitive minielectrodes and a 45Ca2+ tracer method. Spermine stimulated Ca2+ uptake by mitochondria but not by microsomes. In the presence of spermine, isolated mitochondria could maintain a free extramitochondrial Ca2+ concentration of 0.3-0.2 microM. Stimulation of the initial rates of Ca2+ uptake and 45Ca2+ cycling of mitochondria by spermine shows that this was accomplished through a decrease of the apparent Km for Ca2+ uptake by the Ca2+ uniporter. The half maximally effective concentration of spermine (50 microM) was in the range of physiological concentrations of this polyamine in the cell. Spermidine was five times less effective. Putrescine was ineffective. The stimulation of mitochondrial Ca2+ uptake by spermine was inhibited by Mg2+ in a concentration-dependent manner. However, the diminished contribution of the mitochondria to the regulation of the free extraorganellar Ca2+ concentration could mostly be compensated for by microsomal Ca2+ uptake. Spermine also reversed ruthenium red-induced Ca2+ efflux from mitochondria. It is concluded that spermine is an activator of the mitochondrial Ca2+ uniporter and Mg2+ an antagonist. By this mechanism, the polyamines can confer to the mitochondria an important role in the regulation of the free cytoplasmic Ca2+ concentration in the cell and of the free Ca2+ concentration in the mitochondrial matrix.  相似文献   

2.
In experiments carried out with the use of the radioactive label (45Ca2+) on suspension of the rat uterus myocytes processed by digitonin solution (0.1 mg/ml), influence of spermine and cyclosporin A on Mg2+, ATP-dependent Ca2+ transport in mitochondria at different Mg2+ concentration were investigated. Ca2+ accumulation in mitochondria was tested as such which was not sensitive to thapsigargin (100 nM) and was blocked by ruthenium red (10 microM). It has been shown, that spermine (1 mM) stimulates Mg2+, ATP-dependent Ca2+ accumulation in mitochondria irrespective of Mg2+ concentration (3 or 7 mM) in the incubation medium. At the same time cyclosporin A (5 microM) effects on Ca2+ accumulation in mitochondria depend on Mg2+ concentration in the incubation medium: at 3 mM Mg2+ the stimulating effect was observed, and at 7 mM Mg2+ - the inhibitory one. In conditions which led to the increase of nonspecific mitochondrial permeability and, accordingly, to dissipation of electrochemical potential (it was reached by 5 min. preincubation of myocytes suspension in the medium that contained 10 microM Ca2+, 2 mM phosphate and 3 or 7 mM Mg2+, but not ATP) significant inhibition of Mg2+, ATP-dependent Ca2+ accumulation in mitochondria was observed. The inhibition to the greater degree was observed when medium ATP and Mg2+ were absent simultaneously in the preincubation. Thus the quality of spermine effects on Ca2+ accumulation was kept: stimulation in the presence both of 3 mM and 7 mM Mg2+. Ca2+ accumulation did not reach the control level when 3 mM Mg2+ and 1 mM spermine was present and ATP absent in the preincubation medium. However, in the presence of 7 mM Mg2+ and 1 mM spermine practically full restoration (up to a control level) of Ca2+ accumulation was observed. At the same time with other things being equal such restoration was not observed at simultaneous absence of ATP and Mg2+ in the preincubation medium. The quality of cyclosporin A effects on Ca2+ accumulation in mitochondria was also kept: stimulation - in the presence of 3 mM Mg2+, inhibition - in the presence of 7 mM Mg2+ in the preincubation medium. And, at last, in the presence of cyclosporin A irrespective of the fact which preincubation medium was used, Ca2+ accumulation level practically did not depend on Mg2+ concentration.  相似文献   

3.
The effect of spermine (50-400 microM) on the Ca-transporting system of brain mitochondria was studied. In a medium containing Mg2+ and ATP, spermine facilitates the accumulation of Ca2+ by decreasing Km of the uniporter. Spermine inhibits Na-stimulated Ca2+ efflux; this effect is dependent on the ionic strength of the medium--it is decreased when KCl concentration is increased from 20 to 120 mM. Spermine (200 microM) decreases (by 50%) the steady state concentration of Ca2+ maintained by mitochondria. The importance of spermine as a regulator of Ca2+-transport in brain mitochondria is discussed.  相似文献   

4.
In experiments, which were carried out with the use of a radioactive label (45Ca2+) on the suspension of rat uterus myocytes treated by digitonin solution (0.1 mg/ml), influence of Mg ions and spermine on Mg2+, ATP-dependent Ca2+ transport in mitochondria and sarcoplasmic reticulum was investigated. Ca2+ accumulation in mitochondria (1324 +/- 174 pmol Ca2+/10(6) cells for 1 min - the control) was tested as such which was not sensitive to thapsigargin (100 nM) and was blocked by ruthenium red (10 microM). Oxalate-stimulated Ca2+ accumulation in sarcoplasmic reticulum (136 +/- 17 pmol Ca2+/10(6) cells for 1 min - the control) was tested as such which was not sensitive to ruthenium red and was blocked by thapsigargin. It has been shown, that initial speed and level of energy-dependent Ca2+ accumulation in mitochondria considerably exceeded the values of these parameters for sarcoplasmic reticulum Ca2+-accumulation system. Ca2+ accumulation kinetic in mitochondria was characterized by a steady-state phase (for 5-10 min. of incubation) while accumulation kinetic of this cation in sarcoplasmic reticulum corresponded to zero order reaction. Increase of Mg2+ concentration up to 5 mM led to activation of Ca2+-accumulation systems in mitochondria and sarcoplasmic reticulum (values of activation constants K(Mg) for Mg2+ were 2.8 and 0.6 mM, accordingly). Concentration dependence of spermine action on Ca2+ accumulation in mitochondria was described by a dome-shaped curve with a maximum at 1 mM spermine. In case of sarcoplasmic reticulum Ca2+ pump only the inhibition phase was tested at spermine concentration above 1 mM. However values of inhibition constants for both transporting systems were practically identical--5.2 +/- 0.6 and 5.7 +/- 0.7 mM, accordingly. Hence, Mg ions carry out the important role in regulation of energy-dependent Ca2+ transporting systems both in uterus smooth muscle mitochondria and sarcoplasmic reticulum. Spermine acts first of all on mitochondrial calcium uniporter.  相似文献   

5.
The activation energy of mitochondrial Ca2+ transport has been studied in various conditions by Arrhenius plots in the temperature range 6–20°C. In the presence of Mg2+ the activation energy is decreased to 18 kJ/mole from that of 40 kJ/mole found in a sucrose medium. In the presence of the polyamine spermine the activation energy is practically 0 kJ/mole. A lanthanide Eu3+, which is a potent inhibitor of Ca2+ transport, has no significant effect on the activation energy. In a KCl medium the activation energy is increased to 70 kJ/mole. When both K+ and Mg+ are present the activation energy is nonlinear between 11 and 18°C. In the presence of K+ and spermine it is about 0 kJ/mole between 6 and 13°C and at higher temperatures 68 kJ/mole. Neither Mg2+ nor spermine affect the slope of the Arrhenius plot for state 4 respiration. Spermine decreases slightly the activation energy of Ca2+-stimulated respiration. Spermine also decreases the activation energy of valinomycin- or gramicidin-induced safranine uptake by liposomes from 68 to almost 0 kJ/mole between 17 and 30°C. The results indicate that Ca2+ binding to the polar head groups of the phospholipids at the membrane surface is the rate-limiting step of mitochondrial Ca2+ transport, because agents that inhibit Ca2+ binding to these sites (Mg2+, spermine, K+) have the most marked effect, whereas Eu3+, which, because of the small concentration used, ought to interact mainly with the mitochondrial Ca2+ transport system, has no significant effect on the temperature sensitivity of mitochondrial Ca2+ transport.  相似文献   

6.
The seleno-organic compound ebselen mimics the glutathione-dependent, hydroperoxide reducing activity of glutathione peroxidase. The activity of glutathione peroxidase determines the rate of hydroperoxide-induced Ca2+ release from mitochondria. Ebselen stimulates Ca2+ release from mitochondria, accelerates mitochondrial respiration and uncoupling, and induces mitochondrial swelling, indicating a deterioration of mitochondrial function. These manifestations are abolished by cyclosporine A, a potent inhibitor of the mitochondrial permeability transition. However, when ebselen-induced Ca2+ cycling is prevented with ruthenium red, an inhibitor of the Ca2+ uniporter, or by chelation of extramitochondrial Ca2+ by EGTA, no detectable elevation of swelling or uncoupling is observed. The release of Ca2+ from mitochondria is delayed in the absence of rotenone, i.e. when pyridine nucleotides are maintained in the reduced state due to succinate-driven reversed electron flow. We suggest that ebselen induces Ca2+ release from intact mitochondria via an NAD+ hydrolysis-dependent mechanism.  相似文献   

7.
In experiments, carried out with the use of a radioactive label (45Ca2+) on suspension of rat uterus myocytes treated with digitonin solution (0.1 mg/ml), influence of spermine on the Mg2+, ATP-dependent Ca2+ transport in the mitochondria was investigated. Ca2+ accumulation in the mitochondria was tested as such which was blocked by ruthenium red (10 microM) and was not sensitive to thapsigargin (100 nM). It was shown, that dependence of initial speed of Ca ions accumulation in the mitochondria on spermine concentration (0.1-10 mm) is described by a bell-shaped curve. Spermine concentration being increased in the range of 0.1-1 mM the stimulation of Ca2+ accumulation was observed, at the further increase in polyamine concentration up to 10 mM the suppression of this process took place. On the basis of the analysis of the authors' experimental results and the literature data the model of complex spermine action on Ca2+ accumulation in mitochondria was proposed and analyzed. The existence of two spermine binding sites on mitochondrial membrane--S1 and S2 occupation of which is connected to activation and inhibition of Ca(2+)-unipoter, accordingly, was taken into account. The kinetic analysis of the model which has been made in an equilibrium mode, allowed to calculate some important quantitative parameters describing spermine influence on Ca ions accumulation in mitochondria. It is supposed, that the proposed model can be useful in the further research of polyamine influence on transmembrane exchange of Ca ions in mitochondria.  相似文献   

8.
The presence and significance of Na+-induced Ca2+ release from rat liver mitochondria was investigated by the arsenazo technique. Under the experimental conditions used, the mitochondria, as expected, avidly extracted Ca2+ from the medium. However, when the uptake pathway was blocked with ruthenium red, only a small rate of 'basal' release of Ca2+ was seen (0.3 nmol Ca2+ X min-1 X mg-1), in marked contrast to earlier reports on a rapid loss of sequestered Ca2+ from rat liver mitochondria. The addition of Na+ in 'cytosolic' levels (20 mM) led to an increase in the release rate by about 1 nmol Ca2+ X min-1 X mg-1. This effect was specific for Na+. The significance of this Na+-induced Ca2+ release, in relation to the Ca2+ uptake mechanism, was investigated (in the absence of uptake inhibitors) by following the change in the extramitochondrial Ca2+ steady-state level (set point) induced by Na+. A five-fold increase in this level, from less than 0.2 microM to more than 1 microM, was induced by less than 20 mM Na+. The presence of K+ increased the sensitivity of the Ca2+ homeostat to Na+. The effect of Na+ on the extramitochondrial level was equally well observed in an K+/organic-anion buffer as in a sucrose buffer. Liver mitochondria incubated under these circumstances actively counteracted a Ca2+ or EGTA challenge by taking up or releasing Ca2+, so that the initial level, as well as the Na+-controlled level, was regained. It was concluded that liver mitochondria should be considered Na+-sensitive, that the capacity of the Na+-induced efflux pathway was of sufficient magnitude to enable it to influence the extramitochondrial Ca2+ level biochemically and probably also physiologically, and that the mitochondria have the potential to act as active, Na+-dependent regulators of extramitochondrial ('cytosolic') Ca2+. It is suggested that changes of cytosolic Na+ could be a mediator between certain hormonal signals (notably alpha 1-adrenergic) and changes in this extramitochondrial ('cytosolic') Ca2+ steady state level.  相似文献   

9.
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.  相似文献   

10.
1. The effects of Mg2+ on the fluidity and on the transport properties of mitochondrial inner membrane were compared in parallel experiments. The fluidity was measured by intercalated fatty acid spin probes. Valinomycin-induced K+ uptake was followed using an ion-selective electrode. 2. The rotational diffusion rate of lipids was very slightly affected by Mg2+, whereas the ordering of the probed region of the inner membrane increased considerably above 30 degrees C in the presence of Mg2+. Mg2+ strongly inhibited K+ transport, particularly above 30 degrees C. 3. In the presence of different concentration of MgCl2 (0--30 mM) the order parameter showed no significant variation, whereas the rotational correlation time had essentially biphasic character with a minimum (i.e., faster diffusion rate) at 10 mM MgCl2. 4. We conclude that Mg2+ induces structural changes in the mitochondrial inner membrane and concomitant changes in its functional properties. The term 'fluidity' is inadequate for the interpretation of the data, since changes in the order parameter and in the characteristic correlation time of the inner membrane upon addition of Mg2+ did not show parallel tendencies.  相似文献   

11.
12.
13.
1. The kinetics of the efflux of Pi and malate as well as the relationship between Pi transport and intra- and extramitochondrial pH changes were studied in rat-liver mitochondria in the presence of rotenone and oligomycin at different pH's.

2. At high pH a fast efflux of Pi from the mitochondria occurs in the first few seconds, followed by a slow re-entry of Pi into the mitochondria. Under the same conditions the exit of malate shows a time lag of 2–4 sec. The exit of malate coincides with the re-entry of Pi.

3. In the presence of butylmalonate the exit of endogenous Pi is coupled with a concomitant alkalinization of the mitochondrial matrix space, as calculated from the distribution of 5,5-[14C]dimethyloxazolidine-2,4-dione.

4. The stoicheiometry of the Pi-hydroxyl exchange was found to be 1:1.

5. The kinetics of Pi transport are consistent with previous observations that there is a direct exchange between OH and Pi, but not between OH and malate. The equilibrium distribution of H2PO4 and OH deviates from the Donnan distribution. This may be explained by assuming a pH-dependent binding of Pi in the mitochondria.  相似文献   


14.
The effect of inorganic phosphate on Ca2+ retention has been investigated using phosphate-depleted liver mitchondria. Phosphate induces the release of Ca2+ through an efflux route insensitive to ruthenium red. This effect is not due to functional or structural damage, since mitochondria maintain their membrane potential during phosphate-induced Ca2+ efflux. Direct enzymatic measurement of mitochondria pyridine nucleotides has established that changes in their redox state (i.e. increased oxidation) do not play a role in the phosphate-effect. The phosphate-induced Ca2+ efflux requires transport of phosphate out of mitochondria. However, the fluxes of Ca2+ and phosphate do not coincide: the release of phosphate preceeds that of Ca2+.  相似文献   

15.
The independent pathway for Ca2+ efflux of rat liver mitochondria exhibits a sharp temperature and pH dependence. The Arrhenius plot displays a break at 18 degrees C, activation energy being about 117 kJ/mol below 18 degrees C and 59 kJ/mol above 18 degrees C. The pH profile is bell-shaped, with a broad optimum at pH 7.0. These properties of the efflux pathway, together with the membrane potential modulation recently described (Bernardi, P. and Azzone, G.F. (1983) Eur. J. Biochem. 134, 377-383), suggest an explanation for the phenomenon of rebounding Ca2+ transport. Addition of a Ca2+ pulse to respiring mitochondria causes (i) a phase of rapid Ca2+ uptake, leading to a decrease of extramitochondrial free Ca2+ to a lower level with respect to that maintained before Ca2+ addition, and (ii) a slower phase of net Ca2+ efflux, leading to restoration of the steady-state extramitochondrial free Ca2+ preceeding Ca2+ addition. Evidence is provided that the excess Ca2+ uptake is linked to transient inactivation of the efflux pathway due to membrane depolarization. Conversely, the efflux phase is linked to reactivation of the efflux pathway upon repolarization. The efflux component of the rebound cycle and the isolated efflux pathway exhibit similar dependence on temperature, pH and membrane potential.  相似文献   

16.
Direct measurements of phosphorylation of the Ca2+ ATPase of the sarcoplasmic reticulum (SR) have shown that the lifetime of the first phosphorylated intermediate in the Ca2+ transport cycle, E1 approximately P, increases with decreasing [Mg2+] (Dupont, Y. 1980. Eur. J. Biochem. 109:231-238). Previous x-ray diffraction work (Pascolini, D., and J.K. Blasie. 1988. Biophys. J. 54:669-678) under high [Mg2+] conditions (25 mM) indicated that changes in the profile structure of the SR membrane could be responsible for the low-temperature transient trapping of E1 approximately P that occurs at temperatures below 2-3 degrees C, the upper characteristic temperature th for lipid lateral phase separation in the membrane. We now present results of our study of the Ca2+ uptake kinetics and of the structure of the SR membrane at low [Mg2+] (less than or equal to 100 microM). Our results show a slowing in the kinetics of both phases of the Ca2+ uptake process and an increase in the duration of the plateau of the fast phase before the onset of the slow phase, indicating an increase in the lifetime (transient trapping) of E1 approximately P. Calcium uptake kinetics at low [Mg2+] and moderately low temperature (approximately 0 degree C) are similar to those observed at much lower temperatures (approximately -10 degrees C) at high [Mg2+]. The temperature-induced structural changes that we observed at low [Mg2+] are much more pronounced than those found to occur at higher [Mg2+]. Also, at the lower [Mg2+] the upper characteristic temperature th for lipid lateral phase separation was found to be higher, at approximately 8-10 degrees C. Our studies indicate that both temperature and [Mg2+] affect the structure and the functionality (as measured by changes in the kinetics of Ca2+ uptake) of the SR membrane. Membrane lipid phase behavior and changes in the Ca2+ ATPase profile structure seem to be related, and we have found that structural changes are responsible for the slowing of the kinetics of the fast phase of Ca2+ uptake, and could also mediate the effect that [Mg2+] has on E1 approximately P lifetime.  相似文献   

17.
1. Spermine has previously been reported to be an activator of mitochondrial Ca2+ uptake [Nicchitta & Williamson (1984) J. Biol. Chem. 259, 12978-12983]. This is confirmed in the present studies on rat heart, liver and kidney mitochondria by using the activities of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) as probes for matrix Ca2+, and also, for the heart mitochondria, by using entrapped fura-2. 2. As also found previously [Damuni, Humphreys & Reed (1984) Biochem. Biophys. Res. Commun. 124, 95-99], spermine activated extracted pyruvate dehydrogenase phosphate phosphatase. However, it was found to have no effects at all on the extracted NAD+-isocitrate or 2-oxoglutarate dehydrogenases. It also had no effects on activities of the enzymes in mitochondria incubated in the absence of Ca2+, or on the Ca2+-sensitivity of the enzymes in uncoupled mitochondria. 3. Spermine clearly activated 45Ca uptake by coupled mitochondria, but had no effect on Ca2+ egress from mitochondria previously loaded with 45Ca. 4. Spermine (with effective Km values of around 0.2-0.4 mM) caused an approx. 2-3-fold decrease in the effective ranges of extramitochondrial Ca2+ in the activation of the Ca2+-sensitive matrix enzymes in coupled mitochondria from all of the tissues. The effects of spermine appeared to be largely independent of the other effectors of mitochondrial Ca2+ transport, such as Mg2+ (inhibitor of uptake) and Na+ (promoter of egrees). 5. In the most physiological circumstance, coupled mitochondria incubated with Na+ and Mg2+, the presence of saturating spermine (2 mM) resulted in an effective extramitochondrial Ca2+ range for matrix enzyme activation of from about 30-50 nM up to about 800-1200 nM, with half-maximal effects around 250-400 nM-Ca2+. The implications of these findings for the regulation of matrix and extramitochondrial Ca2+ are discussed.  相似文献   

18.
19.
Adipose cytosol treated with spermine showed an aggregation of a cytosolic component which was isolated by centrifugation at 16,000 X g for 20 min. The resultant pellet contained 10% of protein, 40% of lipid and over 75-97% of Mg2+-dependent phosphatidate phosphohydrolase and CTP:phosphocholine cytidylyltransferase activities present in the original cytosol. The specific activities of these enzymes increased 4-fold by the spermine treatment. Characterization of lipids in this component indicated the presence of mainly phospholipids. These studies suggest that the interaction between spermine, the cytosolic component and microsomal membranes may be involved in the translocation of Mg2+-dependent phosphatidate phosphohydrolase.  相似文献   

20.
《BBA》1986,850(1):49-56
Mitochondria isolated from corn (Zea mays L.) coleoptiles by an improved procedure which yields functionally intact preparations are much more active in respiration-coupled Ca2+ accumulation than those employed in most earlier studies. Ca2+ uptake by these mitochondria is phosphate-dependent and is accompanied by decrease in Δψ, H+ extrusion and increase in the rate of respiration. A sigmoidal plot with a Hill coefficient of 2.22 was obtained when the rates of Ca2+ uptake were plotted as a function of free Ca2+ concentration. The K0.5 for Ca2+ influx was about 31 μM and a Vmax of 140 nmol Ca2+ per min per mg was attained at a free-Ca2+ concentration of about 120 μM. Ca2+ uptake is sensitive to inhibition by ruthenium red and Mg2+. The external free-Ca2+ concentration maintained at steady state was about 2 μM and was independent of the respiratory substrate and of external Na+, but was increased by exogenous Mg2+. In addition, this preparation of corn mitochondria has shown a much higher ability for Ca2+ retention in the presence of phosphate and NAD(P)H oxidants than liver mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号