首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tat-specific cytotoxic T cells have previously been shown to exert positive Darwinian selection favoring amino acid replacements of an epitope of simian immunodeficiency virus (SIV). The region of the tat gene encoding this epitope falls within a region of overlap between the tat and vpr reading frames, and nonsynonymous nucleotide substitutions in the tat reading frame were found to occur disproportionately in such a way as to cause synonymous changes in the vpr reading frame. Comparison of published complete SIV genomes showed Tat to be the least conserved at the amino acid level of nine proteins encoded by the virus, while Vpr was one of the most conserved. Numerous parallel amino acid changes occurred within the Tat epitope independently in different monkeys, and purifying selection on the vpr reading frame, by limiting acceptable nonsynonymous substitutions in the tat reading frame, evidently has enhanced the probability of parallel evolution.  相似文献   

2.
Zhao X  McGirr KM  Buehring GC 《Genomics》2007,89(4):502-511
Bovine leukemia virus contains a pXBL region encoding the 3' parts of four regulatory proteins (Tax, Rex, G4, R3) in overlapping reading frames. Here we report the pXBL polymorphisms of 30 isolates from four countries. Rates of overall and synonymous substitutions were consistently lower, and nucleotide/amino acid composition bias and codon bias higher, in more-overlapped than in less-overlapped regions. Ratios of nonsynonymous/synonymous substitutions were lowest in the tax gene and its subregions. The 5' parts of the four genes showed selection patterns corresponding to their genomic context outside of the pXBL region. Longer G4 variants due to a natural stop codon mutation had additional triple overlap with reduced sequence variability. These data support the concept that a higher level of overlapping in coding regions correlates with greater evolutionary constraint. Tax, the most conserved among the four regulatory proteins, showed purifying selection consistent with its importance in the viral life cycle.  相似文献   

3.
CD8(+) T lymphocytes (CD8-TL) select viral escape variants in both human immunodeficiency virus and simian immunodeficiency virus (SIV) infections. The frequency of CD8-TL viral escape as well as the contribution of escape to overall virus diversification has not been assessed. We quantified CD8-TL selection in SIV infections by sequencing viral genomes from 35 SIVmac239-infected animals at the time of euthanasia. Here we show that positive selection for sequences encoding 46 known CD8-TL epitopes is comparable to the positive selection observed for the variable loops of env. We also found that >60% of viral variation outside of the viral envelope occurs within recognized CD8-TL epitopes. Therefore, we conclude that CD8-TL selection is the dominant cause of SIV diversification outside of the envelope.  相似文献   

4.
Viruses employ various means to evade immune detection. Reduction of CD8(+) T cell epitopes is one of the common strategies used for this purpose. Hepatitis B virus (HBV), a member of the Hepadnaviridae family, has four open reading frames, with about 50% overlap between the genes they encode. We computed the CD8(+) T cell epitope density within HBV proteins and the mutations within the epitopes. Our results suggest that HBV accumulates escape mutations that reduce the number of epitopes. These mutations are not equally distributed among genes and reading frames. While the highly expressed core and X proteins are selected to have low epitope density, polymerase, which is expressed at low levels, does not undergo the same selection. In overlapping regions, mutations in one protein-coding sequence also affect the other protein-coding sequence. We show that mutations lead to the removal of epitopes in X and surface proteins even at the expense of the addition of epitopes in polymerase. The total escape mutation rate for overlapping regions is lower than that for nonoverlapping regions. The lower epitope replacement rate for overlapping regions slows the evolutionary escape rate of these regions but leads to the accumulation of mutations more robust in the transfer between hosts, such as mutations preventing proteasomal cleavage into epitopes.  相似文献   

5.
To elucidate the evolutionary mechanisms of the human immunodeficiency virus type 1 gp120 envelope glycoprotein at the single-site level, the degree of amino acid variation and the numbers of synonymous and nonsynonymous substitutions were examined in 186 nucleotide sequences for gp120 (subtype B). Analyses of amino acid variabilities showed that the level of variability was very different from site to site in both conserved (C1 to C5) and variable (V1 to V5) regions previously assigned. To examine the relative importance of positive and negative selection for each amino acid position, the numbers of synonymous and nonsynonymous substitutions that occurred at each codon position were estimated by taking phylogenetic relationships into account. Among the 414 codon positions examined, we identified 33 positions where nonsynonymous substitutions were significantly predominant. These positions where positive selection may be operating, which we call putative positive selection (PS) sites, were found not only in the variable loops but also in the conserved regions (C1 to C4). In particular, we found seven PS sites at the surface positions of the alpha-helix (positions 335 to 347 in the C3 region) in the opposite face for CD4 binding. Furthermore, two PS sites in the C2 region and four PS sites in the C4 region were detected in the same face of the protein. The PS sites found in the C2, C3, and C4 regions were separated in the amino acid sequence but close together in the three-dimensional structure. This observation suggests the existence of discontinuous epitopes in the protein's surface including this alpha-helix, although the antigenicity of this area has not been reported yet.  相似文献   

6.
7.
Pavesi A 《Gene》2007,402(1-2):28-34
In viruses under strong pressure to minimize genome size, overlapping genes represent a fine strategy to condense a maximum amount of information into short nucleotide sequences. Here, we investigated the evolution of the genes encoding the nonstructural proteins NS1 and NS2 of influenza A virus (IAV), which are one of the best characterized cases of gene overlap. By a detailed analysis of about four hundred sequences grouped into 11 IAV subtypes, we found that the overlapping coding region of the NS1 gene shows a significant increase of the rate of nonsynonymous change, with respect to its nonoverlapping counterpart. The same feature was observed in the overlapping coding region of the NS2 gene. Such a variation pattern, which implies the occurrence of several amino acid substitutions in the protein regions encoded by overlapping frames, is different from the pattern of constrained evolution typical of other viral overlapping-gene systems. Amino acid sequence analysis of the NS1 and NS2 proteins revealed that some nonsynonymous substitutions, located in the region of gene overlap, play a critical role in shaping the genetic diversity of the highly pathogenic subtype H5N1. Since both proteins contribute to disease pathogenesis by affecting many virus and host-cell processes, information provided by this study should be useful to highlight the impact of nonstructural gene variation on the pathogenicity of H5N1 viruses.  相似文献   

8.
Activation of CD4(+) T cells helps establish and sustain CD8(+) T cell responses and is required for the effective clearance of acute infection. CD4-deficient mice are unable to control persistent infection and CD4(+) T cells are usually defective in chronic and persistent infections. We investigated the question of how persistent infection impacted pre-existing lymphocytic choriomeningitis virus (LCMV)-specific CD4(+) T cell responses. We identified class II-restricted epitopes from the entire set of open reading frames from LCMV Armstrong in BALB/c mice (H-2(d)) acutely infected with LCMV Armstrong. Of nine epitopes identified, six were restricted by I-A(d), one by I-E(d) and two were dually restricted by both I-A(d) and I-E(d) molecules. Additional experiments revealed that CD4(+) T cell responses specific for these epitopes were not generated following infection with the immunosuppressive clone 13 strain of LCMV. Most importantly, in peptide-immunized mice, established CD4(+) T cell responses to these LCMV CD4 epitopes as well as nonviral, OVA-specific responses were actively suppressed following infection with LCMV clone 13 and were undetectable within 12 days after infection, suggesting an active inhibition of established helper responses. To address this dysfunction, we performed transfer experiments using both the Smarta and OT-II systems. OT-II cells were not detected after clone 13 infection, indicating physical deletion, while Smarta cells proliferated but were unable to produce IFN-gamma, suggesting impairment of the production of this cytokine. Thus, multiple mechanisms may be involved in the impairment of helper responses in the setting of early persistent infection.  相似文献   

9.
A. L. Hughes 《Genetics》1991,127(2):345-353
The circumsporozoite (CS) protein is a cell surface protein of the sporozoite, the stage of the life cycle of malaria parasites (Plasmodium spp.) that infects the vertebrate host. Analysis of DNA sequences supports the hypothesis that in Plasmodium falciparum, positive Darwinian selection favors diversity in the T-cell epitopes (peptides presented to T cells by host MHC molecules) of the CS protein. In gene regions encoding T cell epitopes of P. falciparum, the rate of nonsynonymous nucleotide substitution is significantly higher than that of synonymous substitution, whereas this is not true of other gene regions. Furthermore nonsynonymous nucleotide substitutions in these regions cause a change of amino acid residue charge significantly more frequently than expected by chance. By contrast, in Plasmodium cynomolgi, the same regions show no evidence of positive selection, and residue charge is conserved. The CS protein has a central repeat region, which is the target of host antibodies. In P. falciparum, the amino acid sequence of the repeat region is conserved within and between alleles. In P. cynomolgi, on the other hand, there is evidence that positive selection has favored evolution of two different repeat types within a given allele.  相似文献   

10.
The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered virus at frequent intervals revealed that most acute-phase nonsynonymous mutations were clustered in class I epitopes and appeared much earlier than those in the remainder of the HCV genome. Moreover, the ratio of nonsynonymous to synonymous mutations, a measure of positive selection pressure, was increased 50-fold in class I epitopes compared with the rest of the HCV genome. Finally, some mutation of the clonal H77C genome toward a genotype 1a consensus sequence considered most fit for replication was observed during the acute phase of infection, but the majority of these amino acid substitutions occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic infection is established and genetic drift becomes the dominant evolutionary force.  相似文献   

11.
Here, we investigated the containment of virus replication in simian immunodeficiency virus (SIV) infection by CD8(+) lymphocytes. Escape mutations in Mamu-A*01 epitopes appeared first in SIV Tat TL8 and then in SIV Gag p11C. The appearance of escape mutations in SIV Gag p11C was coincident with compensatory changes outside of the epitope. Eliminating CD8(+) lymphocytes from rhesus monkeys during primary infection resulted in more rapid disease progression that was associated with preservation of canonical epitopes. These results confirm the importance of cytotoxic T cells in controlling viremia and the constraint on epitope sequences that require compensatory changes to go to fixation.  相似文献   

12.
We analyzed SIV-specific monkey sera to localize B-cell epitopes of the envelope glycoprotein of SIV (gp130), using overlapping synthetic peptides representing the entire SIV gp130 protein and sera from experimentally infected monkeys and monkeys immunized with whole, inactivated SIV. A B-cell epitope which induces neutralizing antibody production and T-cell responses was characterized as well as a new B-cell epitope and a previously described neutralizing epitopes. Vaccinated monkey sera recognize the three epitopes differentially relative to unimmunized controls, and a correlation appears to exist between degree of cross-neutralization by infected monkey sera and degree of binding to these three regions.  相似文献   

13.
In viruses an increased coding ability is provided by overlapping genes, in which two alternative open reading frames (ORFs) may be translated to yield two distinct proteins. The identification of signature sequences in overlapping genes is a topic of particular interest, since additional out-of-frame coding regions can be nested within known genes. In this work, a novel feature peculiar to overlapping coding regions is presented. It was detected by analysis of a sample set of 21 virus genomic sequences and consisted in the repeated occurrence of a cluster of basic amino acid residues, encoded by a frame, combined to a stretch of acidic residues, encoded by the corresponding overlapping frame. A computer scan of an additional set of virus sequences demonstrated that this feature is common to several other known overlapping ORFs and led to prediction of a novel overlapping gene in hepatitis G virus (HGV). The occurrence of a bifunctional coding region in HGV was also supported by its extremely lower rate of synonymous nucleotide substitutions compared to that observed in the other gene regions of the HGV genome. Analysis of the amino acid sequence that was deduced from the putative overlapping gene revealed a high content of basic residues and the presence of a nuclear targeting signal; these characteristics suggest that a core-like protein may be expressed by this novel ORF. Received: 21 July 1999 / Accepted: 26 October 1999  相似文献   

14.
The ability to monitor vaccine-elicited CD8(+) cytotoxic T-lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys has been limited by our knowledge of viral epitopes predictably presented to those lymphocytes by common rhesus monkey MHC class I alleles. We now define an SIV and SHIV Nef CTL epitope (YTSGPGIRY) that is presented to CD8(+) T lymphocytes by the common rhesus monkey MHC class I molecule Mamu-A*02. All seven infected Mamu-A*02(+) monkeys evaluated demonstrated this response, and peptide-stimulated interferon gamma Elispot assays indicated that the response represents a large proportion of the entire CD8(+) T-lymphocyte SIV- or SHIV-specific immune response of these animals. Knowledge of this epitope and MHC class I allele substantially increases the number of available rhesus monkeys that can be used for testing prototype HIV vaccines in this important animal model.  相似文献   

15.
CTL based vaccine strategies in the macaque model of AIDS have shown promise in slowing the progression to disease. However, rapid CTL escape viruses can emerge rendering such vaccination useless. We hypothesized that such escape is made more difficult if the immunizing CTL epitope falls within a region of the virus that has a high density of overlapping reading frames which encode several viral proteins. To test this hypothesis, we immunized macaques using a peptide-loaded dendritic cell approach employing epitopes in the second coding exon of SIV Tat which spans reading frames for both Env and Rev. We report here that autologous dendritic cells, loaded with SIV peptides from Tat, Rev, and Env, induced a distinct cellular immune response measurable ex vivo. However, conclusive in vivo control of a challenge inoculation of SIVmac239 was not observed suggesting that CTL epitopes within densely overlapping reading frames are also subject to escape mutations.  相似文献   

16.
Dominant epitope-specific CD8(+) T-lymphocyte responses play a central role in controlling viral spread. We explored the basis for the development of this focused immune response in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys through the use of two dominant (p11C and p199RY) and two subdominant (p68A and p56A) epitopes. Using real-time PCR to quantitate T-cell receptor (TCR) variable region beta (Vbeta) family usage, we show that CD8(+) T-lymphocyte populations specific for dominant epitopes are characterized by a diverse Vbeta repertoire, whereas those specific for subdominant epitopes employ a dramatically more focused Vbeta repertoire. We also demonstrate that dominant epitope-specific CD8(+) T lymphocytes employ TCRs with multiple CDR3 lengths, whereas subdominant epitope-specific cells employ TCRs with a more restricted CDR3 length. Thus, the relative dominance of an epitope-specific CD8(+) T-lymphocyte response reflects the clonal diversity of that response. These findings suggest that the limited clonal repertoire of subdominant epitope-specific CD8(+) T-lymphocyte populations may limit the ability of these epitope-specific T-lymphocyte populations to expand and therefore limit the ability of these cell populations to contribute to the control of viral replication.  相似文献   

17.
Understanding the correlates of immune protection against human immunodeficiency virus and simian immunodeficiency virus (SIV) will require defining the entire cellular immune response against the viruses. Here, we define two novel translation products from the SIV env mRNA that are targeted by the T-cell response in SIV-infected rhesus macaques. The shorter product is a subset of the larger product, which contains both the first exon of the Rev protein and a translated portion of the rev intron. Our data suggest that the translation of viral alternate reading frames may be an important source of T-cell epitopes, including epitopes normally derived from functional proteins.The pathway from viral infection to the cellular immune response is not well understood. Despite the importance of T-cell responses in control of AIDS virus replication (1, 3, 8, 22), the sources of the peptides recognized by virus-specific T cells are still being discovered. AIDS virus-specific CD8+ T lymphocytes (CD8-TL) recognize complexes of major histocompatibility complex (MHC) class I and virus-derived epitopes presented on the surface of infected cells. These epitopes can be derived from exogenous viral proteins in the infecting virion (19, 20) or from de novo synthesis of viral proteins (9, 21). Additional sources of epitopes are also being explored (4, 6).CD8-TL can also recognize epitopes derived from translation of viral alternate reading frames (ARFs). Though CD8-TL specific for ARF-derived epitopes have been detected in human immunodeficiency virus (HIV) (2), they remain a largely unexplored source of epitopes that might elicit potent antiviral cellular immune responses. We recently showed that SIVmac239-infected rhesus macaques that spontaneously controlled viral replication, termed elite controllers, made immunodominant CD8-TL responses against an epitope (RHLAFKCLW, or cRW9) derived from an ARF of the env gene (15). This response selected for viral escape in vivo and suppressed viral replication in an in vitro assay. These findings imply that CD8-TL specific for ARF-derived epitopes might be an important component of the total AIDS virus-specific cellular immune response.Here, we show that the cRW9 epitope is translated as part of two distinct products that differ in size due to start codon usage. The larger and more frequent product contains both the first 23 amino acids of the Rev protein (exon 1) and 50 amino acids translated from the rev intron. The smaller is produced by translation initiation at a start codon within the rev intron and is a subset of the larger product. Finally, we show that these products are degraded after translation from the mature Env-encoding mRNA.  相似文献   

18.
The sporozoite threonine-asparagine-rich protein (STARP) of Plasmodium falciparum is an attractive target for a pre-erythrocytic stage malaria vaccine because both naturally acquired and experimentally induced anti-STARP antibodies can block sporozoite invasion of hepatocytes. To explore the extent of sequence variation, we surveyed nucleotide polymorphism across the entire gene, encompassing 2 exons and an intron, of 124 P. falciparum-infected blood samples from Thailand and 10 from 4 other endemic areas. In total 24 haplotypes were identified despite low-level nucleotide diversity at this locus. The mean number of nonsynonymous substitutions per nonsynonymous site (d(N)) significantly exceeded that of synonymous substitutions per synonymous site (d(S)), suggesting that the STARP gene has evolved under positive selection, probably from host immune pressure. The preponderance of conservative amino acid exchanges and a strongly biased T-nucleotide toward the third position of codons in repeat arrays have reflected simultaneous constraints on this molecule, probably from its respective unknown function and nucleotide composition. Sequence conservation in the STARP locus among clinical isolates from different disease endemic areas would not compromise vaccine incorporation.  相似文献   

19.
RNA virus genomes are compact, often containing multiple overlapping reading frames and functional secondary structure. Consequently, it is thought that evolutionary interactions between nucleotide sites are commonplace in the genomes of these infectious agents. However, the role of epistasis in natural populations of RNA viruses remains unclear. To investigate the pervasiveness of epistasis in RNA viruses, we used a parsimony-based computational method to identify pairs of co-occurring mutations along phylogenies of 177 RNA virus genes. This analysis revealed widespread evidence for positive epistatic interactions at both synonymous and nonsynonymous nucleotide sites and in both clonal and recombining viruses, with the majority of these interactions spanning very short sequence regions. These findings have important implications for understanding the key aspects of RNA virus evolution, including the dynamics of adaptation. Additionally, many comparative analyses that utilize the phylogenetic relationships among gene sequences assume that mutations represent independent, uncorrelated events. Our results show that this assumption may often be invalid.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) and other lentiviridae demonstrate a strong preference for the A-nucleotide, which can account for up to 40% of the viral RNA genome. The biological mechanism responsible for this nucleotide bias is currently unknown. The increased A-content of these viral genomes corresponds to the typical use of synonymous codons by all members of the lentiviral family (HIV, SIV, BIV, FIV, CAEV, EIAV, visna) and the human spuma retrovirus, but not by other retroviruses like the human T-cell leukemia viruses HTLV-I and HTLV-II. In this article, we analyzed A-bias for all codon groups in all open reading frames of several lentiviruses. The extent of lentiviral codon bias could be related to host cellular translation. By calculating codon bias indices (CBIs), we were able to demonstrate an inverse correlation between the extent of codon bias and the rate of translation of individual reading frames in these viruses. Specifically, the shift toward A-rich codons is more pronounced in pol than in gag lentiviral genes. Since it is known that Gag synthesis exceeds Pol synthesis by a factor of 20 due to infrequent ribosomal frame-shifting during translation of the gap-pol mRNA molecule, we propose that the aminoacyl-tRNA availability in the host cell restricts the lentiviral preference for A-rich codons. In addition, less A-nucleotides were found in regions of the viral genome encoding multiple functions; e.g., overlapping reading frames (tat-rev-env) or in genes that overlap regulatory sequences (nef-LTR region). Finally, the characteristics of lentiviral codon usage are presented as a phylogenetic tree without the need for prior sequence alignment.Correspondence to: B. Berkhout  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号