首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property.  相似文献   

2.
Saccharomyces cerevisiae and other yeast cells harboring the linear double stranded (ds) DNA plasmids pGKL1 and pGKL2 secrete a killer toxin consisting of 97K, 31K and 28K subunits into the culture medium (EMBO J. 5, 1995-2002 (1986), Nucleic Acids Res., 15, 1031-1046 (1987]. The 28K subunit of the killer toxin was successfully expressed in S. cerevisiae when it was cloned on a circular plasmid with its putative promoter region replaced with that of S. cerevisiae chromosomal genes. The expression of the 28K subunit of the killer toxin in killer-sensitive cells resulted in the death of the host cells. This killing activity by the 28K subunit was prevented by the expression of the killer immunity, indicating that the killing activity of the killer toxin complex was carried out by the 28K subunit. Although the 28K subunit was synthesized as a intact precursor protein with its own signal sequence, it was not secreted into the culture medium but remained in the host cells. This indicated that 28K subunit killed host cells from inside of the cells rather than from outside. We further suggested that 28K killer subunit without 97K and 31K subunits did not kill the killer-sensitive cells from outside.  相似文献   

3.
In our previous study, it was found that the killer toxin produced by the marine-derived yeast Wickerhamomyces anomalus YF07b has both killing activity and β-1,3-glucanase activity and the molecular mass of it is 47.0 kDa. In this study, the same yeast strain was found to produce another killer toxin which only had killing activity against some yeast strains, but had no β-1,3-glucanase activity and the molecular mass of the purified killer toxin was 67.0 kDa. The optimal pH, temperature and NaCl concentration for action of the purified killer toxin were 3.5, 16 °C and 4.0 % (w/v), respectively. The purified killer toxin could be bound by the whole sensitive yeast cells, but was not bound by manann, chitin and β-1,3-glucan. The purified killer toxin had killing activity against Yarrowia lipolytica, Saccharomyces cerevisiae, Metschnikowia bicuspidata WCY, Candida tropicalis, Candida albicans and Kluyveromyces aestuartii. Lethality of the sensitive cells treated by the newly purified killer toxin from W. anomalus YF07b involved disruption of cellular integrity by permeabilizing cytoplasmic membrane function.  相似文献   

4.
As the killer toxin produced by Williopsis saturnus WC91-2 could kill many sensitive yeast strains, including the pathogenic ones, the extracellular killer toxin in the supernatant of cell culture of the marine yeast strain was purified and characterized. The molecular mass of the purified killer toxin was estimated to be 11.0kDa according to the data from SDS-PAGE. The purified killer toxin had killing activity, but could not hydrolyze laminarin. The optimal conditions for action of the purified killer toxin against the pathogenic yeast Metschnikowia bicuspidate WCY were the assay medium with 10% NaCl, pH 3-3.5 and temperature 16°C. The gene encoding the killer toxin from the marine killer yeast WC91-2 was cloned and the ORF of the gene was 378bp. The deduced protein from the cloned gene encoding the killer toxin had 125 amino acids with calculated molecular weight of 11.6kDa. It was also found that the N-terminal amino acid sequence of the purified killer toxin had the same corresponding sequence deduced from the cloned killer toxin gene in this marine yeast, confirming that the purified killer toxin was indeed encoded by the cloned gene.  相似文献   

5.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40 degrees C. The killer protein was chromosomally encoded. Mannan, but not beta-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

6.
Some marine yeasts have recently been recognised as pathogenic agents in crab mariculture, but may be inhibited or killed by 'killer' yeast strains. We screened multiple yeast strains from seawater, sediments, mud of salterns, guts of marine fish, and marine algae for killer activity against the yeast Metchnikowia bicuspidata WCY (pathogenic to crab Portunus trituberculatus), and found 17 strains which could secrete toxin onto the medium and kill the pathogenic yeast. Of these, 5 strains had significantly higher killing activity than the others; routine identification and molecular methods showed that these were Williopsis saturnus WC91-2, Pichia guilliermondii GZ1, Pichia anomala YF07b, Debaryomyces hansenii hcx-1 and Aureobasidium pullulans HN2.3. We found that the optimal conditions for killer toxin production and action of killer toxin produced by the marine killer yeasts were not all in agreement with those of marine environments and for crab cultivation. We found that the killer toxins produced by the killer yeast strains could kill other yeasts in addition to the pathogenic yeast, and NaCl concentration in the medium could change killing activity spectra. All the crude killer toxins produced could hydrolyze laminarin and the hydrolysis end products were monosaccharides.  相似文献   

7.
Optimum conditions for action of the killer toxin K1 on sensitive strainS. cerevisiae S6 were established. Maximum killing was reached in a very narrow pH range of 4.5–4.6. Maximum susceptibility to toxin was displayed by highly energized fresh cells from the early exponential phase in the presence of an external energy source (at least 200 mmol/L glucose). Further, maintenance of maximum membrane potential was necessary for killer action, as documented by decreasing toxin activity in the presence of increasing concentrations of KCl. The killing was strongly stimulated in the presence of millimolar concentrations of Ca2+ and Mg2+.  相似文献   

8.
The extracellular β-1,3-glucanases in the supernatant of cell culture of the marine yeast Williopsis saturnus WC91-2 was purified to homogeneity with a 115-fold increase in specific β-1,3-glucanase activity as compared to that in the supernatant by ultrafiltration, gel filtration chromatography, and anion-exchange chromatography. According to the data from sodium dodecyl sulfate polyacrylamide gel electrophoresis, the molecular mass of the purified enzyme was estimated to be 47.5 kDa. The purified enzyme could convert laminarin into monosaccharides and disaccharides, but had no killer toxin activity. The optimal pH and temperature of the purified enzyme were 4.0 and 40°C, respectively. The enzyme was significantly stimulated by Li+, Ni2+, and Ba2+. The enzyme was inhibited by phenylmethylsulfonyl fluoride, iodoacetic acid, ethylenediamine tetraacetic acid, ethylene glycol bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, and 1,10-phenanthroline. The K m and V max values of the purified enzyme for laminarin were 3.07 mg/ml and 4.02 mg/min ml, respectively. Both matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectroscopy and DNA sequencing identified a peptide YIEAQLDAFEKR which is the conserved motif of the β-1,3-glucanases from other yeasts.  相似文献   

9.
A mouse anti-anti-anti-idiotypic (Id) IgM monoclonal antibody (mAb K20, Ab4), functionally mimicking a Wyckerhamomyces anomalus (Pichia anomala) killer toxin (KT) characterized by fungicidal activity against yeasts presenting specific cell wall receptors (KTR) mainly constituted by β-1,3-glucan, was produced from animals presenting anti-KT Abs (Ab3) following immunization with a rat IgM anti-Id KT-like mAb (mAb K10, Ab2). MAb K10 was produced by immunization with a KT-neutralizing mAb (mAb KT4, Ab1) bearing the internal image of KTR. MAb K20, likewise mAb K10, proved to be fungicidal in vitro against KT-sensitive Candida albicans cells, an activity neutralized by mAb KT4, and was capable of binding to β-1,3-glucan. MAb K20 and mAb K10 competed with each other and with KT for binding to C. albicans KTR. MAb K20 was used to identify peptide mimics of KTR by the selection of phage clones from random peptide phage display libraries. Using this strategy, four peptides (TK 1-4) were selected and used as immunogen in mice in the form of either keyhole limpet hemocyanin (KLH) conjugates or peptide-encoding minigenes. Peptide and DNA immunization could induce serum Abs characterized by candidacidal activity, which was inhibited by laminarin, a soluble β-1,3-glucan, but not by pustulan, a β-1,6-glucan. These findings show that the idiotypic cascade can not only overcome the barrier of animal species but also the nature of immunogens and the type of technology adopted.  相似文献   

10.
Linear beta-1,3 glucans are elicitors of defense responses in tobacco   总被引:2,自引:0,他引:2  
Laminarin, a linear beta-1,3 glucan (mean degree of polymerization of 33) was extracted and purified from the brown alga Laminaria digitata. Its elicitor activity on tobacco (Nicotiana tabacum) was compared to that of oligogalacturonides with a mean degree of polymerization of 10. The two oligosaccharides were perceived by suspension-cultured cells as distinct chemical stimuli but triggered a similar and broad spectrum of defense responses. A dose of 200 microg mL(-1) laminarin or oligogalacturonides induced within a few minutes a 1.9-pH-units alkalinization of the extracellular medium and a transient release of H(2)O(2). After a few hours, a strong stimulation of Phe ammonia-lyase, caffeic acid O-methyltransferase, and lipoxygenase activities occurred, as well as accumulation of salicylic acid. Neither of the two oligosaccharides induced tissue damage or cell death nor did they induce accumulation of the typical tobacco phytoalexin capsidiol, in contrast with the effects of the proteinaceous elicitor beta-megaspermin. Structure activity studies with laminarin, laminarin oligomers, high molecular weight beta-1, 3-1,6 glucans from fungal cell walls, and the beta-1,6-1,3 heptaglucan showed that the elicitor effects observed in tobacco with beta-glucans are specific to linear beta-1,3 linkages, with laminaripentaose being the smallest elicitor-active structure. In accordance with its strong stimulating effect on defense responses in tobacco cells, infiltration of 200 microg mL(-1) laminarin in tobacco leaves triggered accumulation within 48 h of the four families of antimicrobial pathogenesis-related proteins investigated. Challenge of the laminarin-infiltrated leaves 5 d after treatment with the soft rot pathogen Erwinia carotovora subsp. carotovora resulted in a strong reduction of the infection when compared with water-treated leaves.  相似文献   

11.
Wang X  Chi Z  Yue L  Li J 《Current microbiology》2007,55(5):396-401
The molecular mass of the purified killer toxin from the marine killer yeast YF07b was estimated to be 47.0 kDa. The optimal pH and temperature of the purified killer toxin were 4.5 and 40°C, respectively. The toxin was activated by Ca2+, K+, Na+, Mg2+, Na+, and Co2+. However, Fe2+, Fe3+, Hg2+, Cu2+, Mn2+, Zn2+, and Ag+ acted as inhibitors in decreasing activity of the toxin. The toxin was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, ethylenediaminetetraacetic acid, and 1,10-phenanthroline. The Km of the toxin for laminarin was 1.17 g L−1. The toxin also actively hydrolyzed laminarin and killed the whole cells of the pathogenic yeast in crab.  相似文献   

12.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40°C. The killer protein was chromosomally encoded. Mannan, but not β-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

13.
The use of Kluyveromyces phaffii DBVPG 6076 killer toxin against apiculate wine yeasts has been investigated. The killer toxin of K. phaffii DBVPG 6076 showed extensive anti-Hanseniaspora activity against strains isolated from grape samples. The proteinaceous killer toxin was found to be active in the pH range of 3 to 5 and at temperatures lower than 40 degrees C. These biochemical properties would allow the use of K. phaffii killer toxin in wine making. Fungicidal or fungistatic effects depend on the toxin concentration. Toxin concentrations present in the supernatant during optimal conditions of production (14.3 arbitrary units) exerted a fungicidal effect on a sensitive strain of Hanseniaspora uvarum. At subcritical concentrations (fungistatic effect) the saturation kinetics observed with the increased ratio of killer toxin to H. uvarum cells suggest the presence of a toxin receptor. The inhibitory activity exerted by the killer toxin present in grape juice was comparable to that of sulfur dioxide. The findings presented suggest that the K. phaffii DBVPG 6076 killer toxin has potential as a biopreservative agent in wine making.  相似文献   

14.
Upon fractionating Saccharomyces cerevisiae asynchronous cultures by sucrose density gradient centrifugation in a zonal rotor and examining the exo-1,3-beta-glucanase and deoxyribonucleic acid content of the cells, a periodic step increase in the activity of this enzyme was observed, indicating a discontinuous pattern of synthesis or activation of exo-1,3-beta-glucanase during the mitotic cycle at the transition from the S to the G(2) phase. Similar results were obtained for endo-1,3-beta-glucanase by assaying activity against oxidized laminarin in permeabilized cells, suggesting that the synthesis of endo-1,3-beta-glucanase is controlled in the same way. When a and alpha strains were mated, the specific activity of cell extracts against laminarin, oxidized laminarin, and pustulan remained constant while zygote formation was taking place. However, when growth resumed, active synthesis of 1,3-beta-glucanases took place as shown by the occurrence of a significant increase in the specific activity against the three substrates. Specific changes in the level of glucan degradative enzymes, not observed in a haploid parental strain, occurred when the diploid S. cerevisiae AP-1 was induced to sporulate. The sporulation process triggered the activation of first the pustulan degradative capacity and then the capacity to hydrolyze oxidized laminarin. The specific activity against this substrate was 10 times higher than that against pustulan.  相似文献   

15.
The use of Kluyveromyces phaffii DBVPG 6076 killer toxin against apiculate wine yeasts has been investigated. The killer toxin of K. phaffii DBVPG 6076 showed extensive anti-Hanseniaspora activity against strains isolated from grape samples. The proteinaceous killer toxin was found to be active in the pH range of 3 to 5 and at temperatures lower than 40°C. These biochemical properties would allow the use of K. phaffii killer toxin in wine making. Fungicidal or fungistatic effects depend on the toxin concentration. Toxin concentrations present in the supernatant during optimal conditions of production (14.3 arbitrary units) exerted a fungicidal effect on a sensitive strain of Hanseniaspora uvarum. At subcritical concentrations (fungistatic effect) the saturation kinetics observed with the increased ratio of killer toxin to H. uvarum cells suggest the presence of a toxin receptor. The inhibitory activity exerted by the killer toxin present in grape juice was comparable to that of sulfur dioxide. The findings presented suggest that the K. phaffii DBVPG 6076 killer toxin has potential as a biopreservative agent in wine making.  相似文献   

16.
The killer character of strain isolated from the main mash of sake brewing which produces a killer substance for sake yeast was transmitted to hybrids of the strain and a standard strain of Saccharomyces cerevisiae through a cytoplasmic determinant. The character was eliminated at 41 degrees C by incubation followed by growth at 30 degrees C. The killer strain produced the killer toxin in a growth-associated manner. A preparation of crude killer toxin extract showed first-order inactivation and a linear Arrhenius plot between 25 and 40 degrees C, with an activation of energy of 55.0 kcal/mol. Addition of 1% of synthetic polymer protected the toxin from inactivation by agitation but not by heat. Enhancement of the killer action toward sensitive yeast cells by only the nucleotide adenosine 5'-diphosphate (ADP) was observed after plating on agar medium as well as after incubation in liquid medium. The addition of CaCl2 reversed the enhancing effect of ADP on killing activity. This action of CaCl2 was inhibited by cycloheximide, suggesting that protein synthesis is required for recovery of toxin-induced cells in the presence of CaCl2. Further, CaCl2 overcame the decrease in the intracellular level of adenosine 5'-triphosphate (ATP) enhanced by ADP in killer-treated cells and also inhibited leakage of ATP from the cells with immediate response. The mode of killing action is discussed in terms of a transient state of the cells and the action of ADP and CaCl2.  相似文献   

17.
The optimal conditions for the production of the killer toxin of Debaryomyces hansenii CYC 1021 have been studied. The lethal activity of the killer toxin increased with the presence of NaCl in the medium used for testing the killing action. Production of the killer toxin was stimulated in the presence of proteins of complex culture media. Addition of nonionic detergents and other additives, such as dimethylsulfoxide enhanced killer toxin production significantly. Killer toxin secretion pattern followed the growth curve and reached its maximum activity at the early stationary phase. Optimal stability was observed at pH 4.5 and temperatures up to 20 °C. Above pH 4.5 a steep decrease of the stability was noted. The activity was hardly detectable at pH 5.1.  相似文献   

18.
Summary A cDNA copy of the M2 dsRNA encoding the K2 killer toxin ofSaccharomyces cerevisiae was expressed in yeast using the yeastADH1 promoter. This construct produced K2-specific killing and immunity functions. Efficient K2-specific killing was dependent on the action of the KEX2 endopeptidase and the KEX1 carboxypeptidase, while K2-specific immunity was independent of these proteases. Comparison of the K2 toxin sequence with that of the K1 toxin sequence shows that although they share a common processing pathway and are both encoded by cytoplasmic dsRNAs of similar basic structure, the two toxins are very different at the primary sequence level. Site-specific mutagenesis of the cDNA gene establishes that one of the two potential KEX2 cleavage sites is critical for toxin action but not for immunity. Immunity was reduced by an insertion of two amino acids in the hydrophobic amino-terminal region which left toxin activity intact, indicating an independence of toxin action and immunity.  相似文献   

19.
The Escherichia coli beta-glucuronidase gene has been used as a marker gene to monitor a killer Saccharomyces cerevisiae strain in mixed-culture ferments. The marked killer strain was cured of its M-dsRNA genome to enable direct assessment of the efficiency of killer toxin under fermentation conditions. Killer activity was clearly evident in fermenting Rhine Riesling grape juice of pH 3.1 at 18 degrees C, but the extent of killing depended on the proportion of killer to sensitive cells at the time of inoculation. Killer activity was detected only when the ratio of killer to sensitive cells exceeded 1:2. At the highest ratio of killer to sensitive cells tested (2:1), complete elimination of sensitive cells was not achieved.  相似文献   

20.
A biphasic synthesis of 1,3-beta-glucanase occurred when cells of Saccharomyces cerevisiae AP-1 (a/alpha) were incubated in sporulation medium. The capacity to degrade laminarin increased very slowly during the first 7 h but at a much faster rate thereafter. Changes occurring during the first period were not sporulation specific since the moderate increase in activity against laminarin was insensitive to glutamine and hydroxyurea and also took place in the nonsporulating strain S. cerevisiae AP-1 (alpha/alpha). However, the changes taking place after 7 h must be included in the group of sporulation-specific events since they were inhibited by glucose, glutamine, and hydroxyurea and did not occur in the nonsporulating diploid. Consequently, only when the cells had been incubated for at least 7 h in sporulation medium did full induction of activity against laminarin take place upon shift to a medium which favored vegetative growth. Changes in the relative proportions of the vegetative glucanases, namely, endo- and exo-1,3-beta-glucanase, and the formation of a new sporulation-specific 1,3-beta-glucanase account for the observed events and are the consequence of the expression of the sporulation program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号