首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Two genes, p107 and Rb2/p130, are strictly related to RB, the most investigated tumor suppressor gene, responsible for susceptibility to retinoblastoma. The products of these three genes, namely pRb, p107, and pRb2/p130 are characterized by a peculiar steric confirmation, called “pocket,” responsible for most of the functional interactions characterizing the activity of these proteins in the homeostasis of the cell cycle. The interest in these genes and proteins springs from their ability to regulate cell cycle processes negatively, being able, for example, to dramatically slow down neoplastic growth. So far, among these genes, only RB is firmly established to act as a tumor suppressor, because its lack-of-function is clearly involved in tumor onset and progression. It has been found deleted or mutated in most retinoblastomas and sarcomas, but its inactivation is likely to play a crucial role in other types of human cancers. The two other members of the family have been discovered more recently and are currently under extensive investigation. We review analogies and differences among the pocket protein family members, in an attempt to understand their functions in normal and cancer cells. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression.  相似文献   

5.
Summary Epigenetic models for tumor formation assume that oncogenic transformation results from changes in the activity of otherwise normal genes. Since gene activity can be inhibited by DNA methylation, and inactivation of tumor suppressor genes is a fundamental process in oncogenesis, we investigated the methylation status of the retinoblastoma suppressor gene (RB gene) on chromosome 13, in blood and tumor cells from 21 retinoblastoma patients. Using methylation-sensitive restriction enzymes and a cloned DNA probe for the unmethylated CpG island at the 5 end of RB gene, we obtained evidence of hypermethylation of this gene in a sporadic unilateral retinoblastoma tumor. The closely linked esterase D gene and a CpG-rich island on chromosome 15 were not affected. We suggest that changes in the methylation pattern of the RB gene play a role in the development and spontaneous regression of some retinoblastoma tumors.  相似文献   

6.
7.
Epithelial ovarian cancer (EOC) is thought to arise in part from the ovarian surface epithelium (OSE); however, the molecular events underlying this transformation are poorly understood. Germline mutations in the BRCA1 tumor suppressor gene result in a significantly increased risk of developing EOC and a large proportion of sporadic EOCs display some sort of BRCA1 dysfunction. To generate a model in which Brca1-mediated transformation can be studied, we previously inactivated Brca1 alone in murine OSE, which resulted in an increased accumulation of premalignant changes, but no tumor formation. In this study, we examined tumor formation in mice with conditionally expressed alleles of Brca1, p53 and Rb, alone or in combination. Intrabursal injection of adenovirus expressing Cre recombinase to inactivate p53 resulted in tumors in 100% of mice. Tumor progression was accelerated in mice with concomitant inactivation of Brca1 and p53, but not Rb and p53. Immunohistologic analyses classified the tumors as leiomyosarcomas that may be arising from the ovarian bursa. Brca1 inactivation in primary cultures of murine OSE cells led to a suppression of proliferation that could be rescued by concomitant inactivation of p53 and/or Rb. Brca1-deficient OSE cells displayed an increased sensitivity to the DNA damaging agent cisplatin, and this effect could be modulated by inactivation of p53 and/or Rb. These results indicate that Brca1 deficiency can accelerate tumor development and alter the sensitivity of OSE cells to chemotherapeutic agents. Intrabursal delivery of adenovirus intended to alter gene expression in the ovarian surface epithelium may, in some strains of mice, result in more rapid transformation of adjacent cells, resulting in leiomyosarcomas.  相似文献   

8.
Human retinoblastoma is a pediatric cancer initiated by RB gene mutations in the developing retina. We have examined the origins and progression of retinoblastoma in mouse models of the disease. Retina-specific inactivation of Rb on a p130-/- genetic background led to bilateral retinoblastoma with rapid kinetics, whereas on a p107-/- background Rb mutation caused predominantly unilateral tumors that arose with delayed kinetics and incomplete penetrance. In both models, retinoblastomas arose from cells at the extreme periphery of the murine retina. Furthermore, late retinoblastomas progressed to invade the brain and metastasized to the cervical lymph nodes. Metastatic tumors lacking Rb and p130 exhibited chromosomal changes revealed by representational oligonucleotide microarray analysis including high-level amplification of the N-myc oncogene. N-myc was found amplified in three of 16 metastatic retinoblastomas lacking Rb and p130 as well as in retinoblastomas lacking Rb and p107. N-myc amplification ranged from 6- to 400-fold and correlated with high N-myc-expression levels. These murine models closely resemble human retinoblastoma in their progression and secondary genetic changes, making them ideal tools for further dissection of steps to tumorigenesis and for testing novel therapies.  相似文献   

9.
10.
Sertoli cells, the support cells of mammalian spermatogenesis, are regulated by a number of nuclear factors and express retinoblastoma (RB) tumor suppressor protein. We hypothesized that RB is an important mediator of Sertoli cell tumorigenesis in inhibin α knockout (Inha KO) mice. In our previous mouse studies, we found that conditional knockout (cKO) of Rb in Sertoli cells caused progressive Sertoli cell dysfunction. Initially, loss of RB had no gross effect on Sertoli cell function as the mice were fertile with normal testis weights at 6 weeks of age, but by 10–14 weeks of age, mutant mice demonstrated severe Sertoli cell dysfunction and infertility. Although double knockout (dKO) of Rb and Inha did not result in exacerbation of the tumorigenic phenotype of Inha-null mice, we found that the dKO mice demonstrate an acceleration of Sertoli cell dysfunction compared to Rb cKO mice. Specifically, in contrast to Rb cKO mice, Inha/Rb dKO mice showed signs of Sertoli cell dysfunction as early as 4 weeks of age. These results demonstrate that RB is not essential for Sertoli cell tumorigenesis in Inha KO mice but that loss of Inha accelerates the infertility phenotype of Rb cKO mice.  相似文献   

11.
Wei W  Herbig U  Wei S  Dutriaux A  Sedivy JM 《EMBO reports》2003,4(11):1061-1066
Current models envision replicative senescence to be under dual control by the p53 and retinoblastoma (RB) tumour-suppressor pathways. The role of the p16INK4a–RB pathway is controversial, and the function of RB in human cells has not been tested directly. We used targeted homologous recombination to knock out one copy of RB in presenescent human fibroblasts. During entry into senescence, RB+/− cells underwent spontaneous loss of heterozygosity and the resultant RB−/− clones bypassed senescence. The extended lifespan phase was eventually terminated by a crisis-like state. The same phenotype was documented for p21 CIP1/WAF1 and p53 heterozygous cells, indicating that loss of function of all three genes results in failure to establish senescence. By contrast, the abolition of p16 function by the expression of a p16-insensitive cyclin-dependent kinase 4 protein or siRNA-mediated knockdown provided only minimal lifespan extension that was terminated by senescence. We propose that p53, p21 and RB act in a linear genetic pathway to regulate cell entry into replicative senescence.  相似文献   

12.
Epigenetic inactivation due to aberrant promoter methylation is a key process in breast tumorigenesis. Murine models for human breast cancer have been established for nearly every important human oncogene or tumor suppressor gene. Mouse-to-human comparative gene expression and cytogenetic profiling have been widely investigated for these models; however, little is known about the conservation of epigenetic alterations during tumorigenesis. To determine if this key process in human breast tumorigenesis is also mirrored in a murine breast cancer model, we mapped cytosine methylation changes in primary adenocarcinomas and paired lung metastases derived from the polyomavirus middle T antigen mouse model. Global changes in methylcytosine levels were observed in all tumors when compared to the normal mammary gland. Aberrant methylation and associated gene silencing was observed for Hoxa7, a gene that is differentially methylated in human breast tumors, and Gata2, a novel candidate gene. Analysis of HOXA7 and GATA2 expression in a bank of human primary tumors confirms that the expression of these genes is also reduced in human breast cancer. In addition, HOXA7 hypermethylation is observed in breast cancer tissues when compared to adjacent tumor-free tissue. Based on these studies, we present a model in which comparative epigenetic techniques can be used to identify novel candidate genes important for human breast tumorigenesis, in both primary and metastatic tumors.  相似文献   

13.
14.
15.
Evolutionary forces that shape regulatory networks remain poorly understood. In mammals, the Rb pathway is a classic example of species-specific gene regulation, as a germline mutation in one Rb allele promotes retinoblastoma in humans, but not in mice. Here we show that p53 transactivates the Retinoblastoma-like 2 (Rbl2) gene to produce p130 in murine, but not human, cells. We found intronic fuzzy tandem repeats containing perfect p53 response elements to be important for this regulation. We next identified two other murine genes regulated by p53 via fuzzy tandem repeats: Ncoa1 and Klhl26. The repeats are poorly conserved in evolution, and the p53-dependent regulation of the murine genes is lost in humans. Our results indicate a role for the rapid evolution of tandem repeats in shaping differences in p53 regulatory networks between mammalian species.  相似文献   

16.
Retinoblastoma, an embryonic neoplasm of retinal origin, is the most common primary intraocular malignancy in children. Somatic inactivation of both alleles of the RB1 tumor suppressor gene in a retinal progenitor cell through diverse mechanisms including genetic and epigenetic modifications, is the crucial event in initiation of tumorigenesis in most cases of isolated unilateral retinoblastoma. We analyzed DNA from tumor tissue and from peripheral blood to determine the RB1 mutation status and seek correlations with clinical features of 37 unrelated cases of Tunisian origin with sporadic retinoblastoma. All cases were unilateral except one who presented with bilateral disease, in whom no germline coding sequence alteration was identified. A multi-step mutation scanning protocol identified bi-allelic inactivation of RB1 gene in 30 (81%) of the samples tested. A total of 7 novel mutations were identified. There were three tumors without any detectable mutation while a subset contained multiple mutations in RB1 gene. The latter group included tumors collected after treatment with chemotherapy. There were seven individuals with germline mutations and all presented with advanced stage of tumor. There was no difference in age of onset of RB based on the germline mutation status. Thus 20% of the individuals with sporadic unilateral RB in this series carried germline mutations and indicate the importance of genetic testing all children with sporadic retinoblastoma. These findings help to characterize the spectrum of mutations present in the Tunisian population and can improve genetic diagnosis of retinoblastoma.  相似文献   

17.
18.
Despite intensive breeding efforts, potato late blight, caused by the oomycete pathogen Phytophthora infestans, remains a threat to potato production worldwide because newly evolved pathogen strains have consistently overcome major resistance genes. The potato RB gene, derived from the wild species Solanum bulbocastanum, confers resistance to most P. infestans strains through recognition of members of the pathogen effector family IPI-O. While the majority of IPI-O proteins are recognized by RB to elicit resistance (e.g. IPI-O1, IPI-O2), some family members are able to elude detection (e.g. IPI-O4). In addition, IPI-O4 blocks recognition of IPI-O1, leading to inactivation of RB-mediated programmed cell death. Here, we report results that elucidate molecular mechanisms governing resistance elicitation or suppression of RB by IPI-O. Our data indicate self-association of the RB coiled coil (CC) domain as well as a physical interaction between this domain and the effectors IPI-O4 and IPI-O1. We identified four amino acids within IPI-O that are critical for interaction with the RB CC domain and one of these amino acids, at position 129, determines hypersensitive response (HR) elicitation in planta. IPI-O1 mutant L129P fails to induce HR in presence of RB while IPI-O4 P129L gains the ability to induce an HR. Like IPI-O4, IPI-O1 L129P is also able to suppress the HR mediated by RB, indicating a critical step in the evolution of this gene family. Our results point to a model in which IPI-O effectors can affect RB function through interaction with the RB CC domain.  相似文献   

19.
20.
Osteogenic sarcoma (osteosarcoma) is the most common primary tumor of bone. It accounts for approximately 19% of all malignant tumors of the bone. Of all the molecular targets altered during the genesis of osteosarcoma, the retinoblastoma gene (RB1) shows the highest frequency of inactivation. Published data from human osteosarcoma tumors and in vivo and in vitro model systems support a role for the retinoblastoma gene family in bone development and tumorigenesis. Although a variety of bone tumors, depending on the cell of origin, including osteoclasts or osteoclast-like cells, chondroblasts, and fibroblasts, are described, for the purpose of this review we will focus primarily on the tumors arising from the osteoblast lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号