首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
During this century the southwestern corn borer, Diatraea grandiosella (Lepidoptera: Pyralidae), has extended its range from subtropical Mexico into the United States, below 38° N latitude. This maize‐feeding insect is now found from Arizona east to Alabama and north to Kansas, Missouri, and Tennessee. The species has adapted to the shorter growing seasons, longer summer daylengths, and lower winter temperatures present in the southern US than are present in Mexico. Life history, morphological, and behavioral traits were compared for populations of D. grandiosella from southeastern Missouri and southcentral Mexico and revealed differentiation in a suite of characters, some of which show clear adaptation to a northern climate while others are obviously less adaptive. An electrophoretic comparison of enzymes from D. grandiosella from the central portion of its range in the US and from a population from southcentral Mexico indicated that considerable genetic differentiation has occurred. Quantitative genetic studies should be undertaken on the original and dispersed populations to differentiate between those characters that have been directly responsible for the adaptation of this insect to northern maize‐growing regions and those that have changed merely due to genetic correlations with characters undergoing selection. Data from such studies, together with available information about the dispersal of this insect, should provide insight into factors regulating the movement of tropical insects into temperate regions.  相似文献   

2.
The impact of natural enemies on cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), populations in cotton, Gossypium hirsutum L., production systems in the southeastern United States was evaluated over 3 yr in irrigated commercial cotton fields. Fungal epizootics caused by the entomopathogen Neozygites fresenii (Nowakowski) Batko reduced aphid numbers to subthreshold levels in 1999, 2000, and 2001 and occurred consistently in early to mid-July in all 3 yr. Scymnus spp. were the most abundant aphidophagous predators, although other coccinellid species and generalist predators such as spiders, fire ants, heteropterans, and neuropterans also were present. Studies using arthropod exclusion cages demonstrated little impact of predators or parasitoids on aphid populations before fungal epizootics. Arthropod natural enemies were most abundant after epizootics and may have suppressed aphid populations late in the season. Seed cotton yield, and lint quality were not affected by aphicide applications in any year of the study. Implications of these findings for aphid management in the southeastern United States are discussed.  相似文献   

3.
Control of mid-sized mammalian predators (hereafter, mesopredators) is sometimes advocated in an attempt to reduce their impact on wildlife populations, particularly economically important (i.e., game) or endangered species. However, mesopredators may play a role in regulating small mammal populations; thus, lethal control of mesopredators may have unintended consequences. The hispid cotton rat (Sigmodon hispidus; hereafter, cotton rat) is one of the most common small mammals in the southeastern United States and is an important prey species for several of the region's predators. Within fire-maintained communities, such as the longleaf pine (Pinus palustris) forests of the Coastal Plain, cotton rat populations dramatically, yet temporarily, decline following prescribed fire. To evaluate the effects of mesopredator removal on cotton rat survival and cause-specific mortality, we conducted a large-scale mesopredator exclusion experiment that incorporated a prescribed fire during the winter of study. Between 18 May 2006 and 20 June 2007, we used radio-telemetry to monitor 252 cotton rats (131 in exclosures and 121 in controls) and documented 184 mortalities. During the 37-week period of monitoring prior to the prescribed fire event, weekly survival of cotton rats was greater in mesopredator exclusion plots. During the 19 weeks following the prescribed fire, there were no differences in weekly survival relative to mesopredator treatment, but fire caused a short-term reduction in weekly survival within both exclosures and controls. Of 36 cotton rats monitored on the date of prescribed fire, 18 were depredated within 1 month, 4 emigrated, and 5 were killed by the fire event. Overall, raptors preyed on cotton rats more in exclosures than in controls, but evidence for compensatory predation (raptor-caused morality greater in exclosures than in controls although survival rates were similar between treatments) only occurred following the prescribed fire event. Our results suggest that managing mesopredators may result in a temporary increase in cotton rat survival, but dormant season prescribed fire removes this effect until well into the following growing season. © 2011 The Wildlife Society.  相似文献   

4.
Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases.  相似文献   

5.
Prior to 1900, coyotes (Canis latrans) were restricted to the western and central regions of North America, but by the early 2000s, coyotes became ubiquitous throughout the eastern United States. Information regarding morphological and genetic structure of coyote populations in the southeastern United States is limited, and where data exist, they are rarely compared to those from other regions of North America. We assessed geographic patterns in morphology and genetics of coyotes with special consideration of coyotes in the southeastern United States. Mean body mass of coyote populations increased along a west‐to‐east gradient, with southeastern coyotes being intermediate to western and northeastern coyotes. Similarly, principal component analysis of body mass and linear body measurements suggested that southeastern coyotes were intermediate to western and northeastern coyotes in body size but exhibited shorter tails and ears from other populations. Genetic analyses indicated that southeastern coyotes represented a distinct genetic cluster that differentiated strongly from western and northeastern coyotes. We postulate that southeastern coyotes experienced lower immigration from western populations than did northeastern coyotes, and over time, genetically diverged from both western and northeastern populations. Coyotes colonizing eastern North America experienced different selective pressures than did stable populations in the core range, and we offer that the larger body size of eastern coyotes reflects an adaptation that improved dispersal capabilities of individuals in the expanding range.  相似文献   

6.
Transgenic cotton, Gossypium hirsutum L., lines expressing both Cry1F and Cry1Ac insecticidal proteins from Bacillus thuringiensis (Bt) have been commercially available in the United States since 2005. Both Bt proteins are highly effective against tobacco budworm, Heliothis virescens (F.), and other lepidopteran pests of cotton. Although CrylAc has been available in Bt cotton since 1996, the Cry1F component is relatively new. As part of the proactive resistance management program for Cry1F/Cry1Ac cotton, a susceptibility-monitoring program is being implemented. Baseline variation in the susceptibility to Cry1F in field populations of tobacco budworm was measured. There was a three-fold variation in the amount of Cry1F needed to kill 50% of the neonates from 15 different field populations from the southern and central United States. Future variation in susceptibility of tobacco budworm populations to Cry1F or even resistance evolution could be documented based on this baseline data. A candidate diagnostic concentration was determined that may be efficiently used to identify individuals that potentially carry major alleles conferring field-relevant resistance to Cry1F before such alleles spread through field populations.  相似文献   

7.
The Asian tiger mosquito, Aedes albopictus, is an anthropophilic aggressive daytime-biting nuisance and an efficient vector of certain arboviruses and filarial nematodes. Over the last 30 years, this species has spread rapidly through human travel and commerce from its native tropical forests of Asia to every continent except Antarctica. In 2011, a population of Asian tiger mosquito (Aedes albopictus) was discovered in Los Angeles (LA) County, California. To determine the probable origin of this invasive species, the genetic structure of the population was compared against 11 populations from the United States and abroad, as well as preserved specimens from a 2001 introduction into California using the mitochondrial cytochrome c oxidase 1 (CO1) gene. A total of 66 haplotypes were detected among samples and were divided into three main groups. Aedes albopictus collected in 2001 and 2011 from LA County were genetically related and similar to those from Asia but distinct from those collected in the eastern and southeastern United States. In view of the high genetic similarities between the 2001 and 2011 LA samples, it is possible that the 2011 population represents in part the descendants of the 2001 introduction. There remains an imperative need for improved surveillance and control strategies for this species.  相似文献   

8.
Koeberlinia has a natural amphitropical distribution that includes the deserts of central Bolivia, northern Mexico, and the southwestern United States. Despite the long recognition of only one species, K. spinosa, field, herbarium, and SEM studies support the recognition of two species. Koeberlinia spinosa of northern Mexico and adjacent United States is recognized to consist of three varieties: K. spinosa var. spinosa of northeastern Mexico and the adjacent United States, K. spinosa var. tenuispina of the Sonoran Desert of southwestern Arizona, adjacent California, and northwestern Mexico, and K. spinosa var. wivaggii from south central Texas and northern Mexico to Arizona, which is described as new. Koeberlina holacantha, endemic to the deserts of Bolivia, is proposed as new.  相似文献   

9.
Question: How do studies of the distribution of genetic diversity of species with different life forms contribute to the development of conservation strategies? Location: Old‐growth forests of the southeastern United States. Methods: Reviews of the plant allozyme literature are used to identify differences in genetic diversity and structure among species with different life forms, distributions and breeding systems. The general results are illustrated by case studies of four plant species characteristic of two widespread old‐growth forest communities of the southeastern United States: the Pinus palustris – Aristida stricta (Longleaf pine – wiregrass) savanna of the Coastal Plain and the Quercus – Carya – Pinus (Oak‐hickory‐pine) forest of the Piedmont. Genetic variation patterns of single‐gene and quantitative traits are also reviewed. Results: Dominant forest trees, represented by Pinus palustris(longleaf pine) and Quercus rubra (Northern red oak), maintain most of their genetic diversity within their populations whereas a higher proportion of the genetic diversity of herbaceous understorey species such as Sarracenia leucophylla and Trillium reliquum is distributed among their populations. The herbaceous species also tend to have more population‐to‐population variation in genetic diversity. Higher genetic differentiation among populations is seen for quantitative traits than for allozyme traits, indicating that interpopulation variation in quantitative traits is influenced by natural selection. Conclusion: Developing effective conservation strategies for one or a few species may not prove adequate for species with other combinations of traits. Given suitable empirical studies, it should be possible to design efficient conservation programs that maintain natural levels of genetic diversity within species of conservation interest.  相似文献   

10.
Comparative analysis of ospC genes from 127 Borrelia burgdorferi sensu stricto strains collected in European and North American regions where Lyme disease is endemic and where it is not endemic revealed a close relatedness of geographically distinct populations. ospC alleles A, B, and L were detected on both continents in vectors and hosts, including humans. Six ospC alleles, A, B, L, Q, R, and V, were prevalent in Europe; 4 of them were detected in samples of human origin. Ten ospC alleles, A, B, D, E3, F, G, H, H3, I3, and M, were identified in the far-western United States. Four ospC alleles, B, G, H, and L, were abundant in the southeastern United States. Here we present the first expanded analysis of ospC alleles of B. burgdorferi strains from the southeastern United States with respect to their relatedness to strains from other North American and European localities. We demonstrate that ospC genotypes commonly associated with human Lyme disease in European and North American regions where the disease is endemic were detected in B. burgdorferi strains isolated from the non-human-biting tick Ixodes affinis and rodent hosts in the southeastern United States. We discovered that some ospC alleles previously known only from Europe are widely distributed in the southeastern United States, a finding that confirms the hypothesis of transoceanic migration of Borrelia species.  相似文献   

11.
Abstract: Many aquatic species in the arid southwestern United States are imperiled, persisting primarily in isolated, low-order streams that are increasingly vulnerable to stochastic disturbances. During 2003 and 2004, we surveyed 39 mountain canyons in southeastern Arizona, USA, for lowland leopard frogs (Rana yavapaiensis), a species that has declined in abundance and distribution across its range in the United States. We quantified habitat features at 2 spatial scales, canyon and pool, to identify features that distinguished sites inhabited by frogs from those uninhabited by frogs. Canyons inhabited by frogs had watersheds that averaged 8.1 km2 larger (SE = 2.52), pools that averaged 37.8 m3 greater (9.30) in volume, gradients that averaged 4.1% (1.40%) less steep, and locations that averaged 3.2 km closer (1.06) to the nearest valley stream than did uninhabited canyons. Plunge pools inhabited by frogs averaged 13.5% (5.66%) more perimeter vegetation, 11.2% (5.34%) more canopy cover, and 1.9 (0.60) more refuges than uninhabited pools. In general, canyons that provided more perennial water during dry summer months and plunge pools that provided more bank heterogeneity were more likely to be inhabited by frogs. Conservation of lowland leopard frogs and other aquatic species that inhabit xeric systems in the southwestern United States depends principally on maintaining riparian ecosystems that provide habitat for these species and the adjacent uplands that influence the structure and function of these systems. Therefore, both riparian areas and their adjacent uplands must be managed to maintain habitat for organisms that inhabit these rare and diverse ecosystems.  相似文献   

12.
Anolis carolinensis is an emerging model species and the sole member of its genus native to the United States. Considerable morphological and physiological variation has been described in the species, and the recent sequencing of its genome makes it an attractive system for studies of genome variation. To inform future studies of molecular and phenotypic variation within A. carolinensis, a rigorous account of intraspecific population structure and relatedness is needed. Here, we present the most extensive phylogeographic study of this species to date. Phylogenetic analyses of mitochondrial DNA sequence data support the previous hypothesis of a western Cuban origin of the species. We found five well‐supported, geographically distinct mitochondrial haplotype clades throughout the southeastern United States. Most Florida populations fall into one of three divergent clades, whereas the vast majority of populations outside Florida belong to a single, shallowly diverged clade. Genetic boundaries do not correspond to major rivers, but may reflect effects of Pleistocene glaciation events and the Appalachian Mountains on migration and expansion of the species. Phylogeographic signal should be examined using nuclear loci to complement these findings.  相似文献   

13.
Summary Aedes albopictus is commonly distributed in most parts of the Oriental region and on many islands in the Indian and the Pacific Oceans. The species was recently introduced into the United States and Brazil. Feulgen cytophotometric quantitation of haploid nuclear DNA content was carried out for 37 populations of Ae. albopictus to determine the extent of intraspecific variation in nuclear DNA content and whether the range expansion of the species has coincided with an increase in DNA content. The haploid nuclear DNA content varied nearly three-fold. The minimum DNA content was 0.62 pg in Koh Samui from Thailand, and the maximum DNA content was 1.66 pg in Houston-61 from the United States. Statistical comparisons of populations revealed significant differences in DNA contents. No geographic clustering of populations was noted with respect to DNA content. In general, populations from the United States and Brazil had higher DNA contents, but there was no indication that the range expansion had occurred hand in hand with an increase in DNA content. Each population had a specific amount of DNA that is probably imposed by the microenvironment.  相似文献   

14.
Birds employ numerous strategies to cope with seasonal fluctuations in high-quality habitat availability. Long distance migration is a common tactic; however, partial migration is especially common among broadly distributed species. Under partial migration systems, a portion of a species migrates, whereas the remainder inhabits breeding grounds year round. In this study, we identified effects of migratory behavior variation on genetic structure and diversity of American Kestrels (Falco sparverius), a widespread partial migrant in North America. American Kestrels generally migrate; however, a resident group inhabits the southeastern United States year round. The southeastern group is designated as a separate subspecies (F. s. paulus) from the migratory group (F. s. sparverius). Using mitochondrial DNA and microsatellites from 183 and 211 individuals, respectively, we illustrate that genetic structure is stronger among nonmigratory populations, with differentiation measures ranging from 0.060 to 0.189 depending on genetic marker and analysis approach. In contrast, measures from western North American populations ranged from 0 to 0.032. These findings suggest that seasonal migratory behavior is also associated with natal and breeding dispersal tendencies. We likewise detected significantly lower genetic diversity within nonmigratory populations, reflecting the greater influence of genetic drift in small populations. We identified the signal of population expansion among nonmigratory populations, consistent with the recent establishment of higher latitude breeding locations following Pleistocene glacial retreat. Differentiation of F. s. paulus and F. s. sparverius reflected subtle differences in allele frequencies. Because migratory behavior can evolve quickly, our analyses suggest recent origins of migratory American Kestrel populations in North America.  相似文献   

15.
Mutualistic interactions can be exploited by cheaters that take the rewards offered by mutualists without providing services in return. The evolution of cheater species from mutualist ancestors is thought to be possible under particular ecological conditions. Here we provide a test of the first explicit model of the transition from mutualism to antagonism. We used the obligate pollination mutualism between yuccas and yucca moths to examine the origins of a nonpollinating cheater moth, Tegeticula intermedia, and its pollinating sister species, T. cassandra. Based on geographic distribution and ecological factors affecting the pollinators, previous research had indicated that the cheaters evolved in Florida as a result of sympatry of T. cassandra and another pollinator species. We used mitochondrial DNA (mtDNA) sequences and amplified fragment length polymorphism (AFLP) data to investigate the phylogeographic history of the pollinator-cheater sister pair and to test whether the cheaters arose in Florida. Contrary to predictions, phylogenetic and population genetic analyses suggested that the cheaters evolved in the western United States and subsequently spread eastward. Western populations of cheaters had the most ancestral haplotypes and the highest genetic diversity, and there was also significant genetic structure associated with a geographic split between eastern and western populations. In comparison, there was evidence for weak genetic structure between northern and southern pollinator populations, suggesting a long history in Florida. The western origin of the cheaters indicated that the pollinators have more recently become restricted to the southeastern United States. This was supported by AFLP analyses that indicated that the pollinators were more closely related to the western cheaters than they were to geographically proximate cheaters in the east. Shared mtDNA between pollinators and eastern cheaters suggested hybridization, possibly in a secondary contact zone. The results negate the out-of-Florida hypothesis and reveal instead a long, complex, and disparate history for the pollinator-cheater sister pair.  相似文献   

16.
The southeastern coastal plain of the United States is a region marked by extraordinary phylogeographic congruence that is frequently attributed to the changing sea levels that occurred during the glacial‐interglacial cycles of the Pleistocene epoch. A phylogeographic break corresponding to the Apalachicola River has been suggested for many species studied to date that are endemic to this region. Here, we used this pattern of phylogeographic congruence to develop and test explicit hypotheses about the genetic structure in the ornate chorus frog (Pseudacris ornata). Using 1299 bp of mtDNA sequence and seven nuclear microsatellite markers in 13 natural populations of P. ornata, we found three clades corresponding to geographically distinct regions; one spans the Apalachicola River (Southern Clade), one encompasses Georgia and South Carolina (Central Clade) and a third comprises more northerly individuals (Northern Clade). However, it does not appear that typical phylogeographic barriers demarcate these clades. Instead, isolation by distance across the range of the entire species explained the pattern of genetic variation that we observed. We propose that P. ornata was historically widespread in the southeastern United States, and that a balance between genetic drift and migration was the root of the genetic divergence among populations. Additionally, we investigated fine‐scale patterns of genetic structure and found the spatial scale at which there was significant genetic structure varied among the regions studied. Furthermore, we discuss our results in light of other phylogeographic studies of southeastern coastal plain organisms and in relation to amphibian conservation and management.  相似文献   

17.
《Journal of bryology》2013,35(3):247-249
Abstract

The few studies that have investigated levels of genetic variation in liverworts have found very little polymorphism. Our electrophoretic data show, however, that the leafy liverwort Porella platyphylla maintains high levels of genetic variation in at least some natural populations from the southeastern United States. Within a single population from southwestern North Carolina, we detected 26 distinct multilocus genotypes and more than 80% of the enzyme loci we surveyed were polymorphic. It seems likely that earlier studies of mostly thalloid species from glaciated regions of Europe have presented a biased picture of levels of variation in liverwort populations.  相似文献   

18.
Producers of Bt cotton, Gossypium hirsutum L. (Malvaceae), in the southeastern USA face significant losses from highly polyphagous stink bug species. These problems may be exacerbated by crop rotation practices that often result in cotton, peanut, Arachis hypogaea L., and soybean, Glycine max (L.) Merrill (both Fabaceae), growing in close proximity to one another. Because all of these crops are hosts for the major pest stink bug species in the region, we experimentally examined colonization preference of these species among the crops to clarify this aspect of their population dynamics. We planted peanut, soybean, Bt cotton, and glyphosate‐tolerant (RR) non‐Bt cotton at three sites over 3 years in replicated plots ranging from 192 to 1 323 m2 and calculated odds ratios for colonization of each crop for Nezara viridula (L.) and Euschistus servus (Say) (both Hemiptera: Pentatomidae). In four of five experiments, both E. servus and N. viridula preferred soybean significantly more often than Bt cotton, non‐Bt cotton, and peanut. Neither N. viridula nor E. servus showed any preference between non‐Bt and Bt cotton in any experiment. Both species had higher numbers in Bt and non‐Bt cotton relative to peanut; this was not significant for any single experiment, but analyses across all experiments indicated that N. viridula preferred Bt and non‐Bt cotton significantly more often than peanut. Our results suggest that soybean in the landscape may function as a sink for stink bug populations relative to nearby peanut and cotton when the soybean is in the reproductive stage of development. Stink bug preference for soybean may reduce pest pressure in near‐by crops, but population increases in soybean could lead to this crop functioning as a source for later‐season pest pressure in cotton.  相似文献   

19.
Lathyrus latifolius (everlasting pea) is a perennial vine native to Europe. Naturalized populations of L. latifolius occur in fields and on roadsides over large areas of the United States. Widely cultivated as a garden flower, L. latifolius produces abundant racemes of showy flowers that are bumblebee-pollinated. The seeds are heavy, large, and round, and exhibit no specialized means of dispersal. Allozyme diversity and population structure were determined for 32 populations of L. latifolius—30 from the southeastern United States and two from Oregon. Results from 21 allozyme loci indicate that genetic diversity is higher and population divergence is lower than expected based on the life history characteristics of the species. No association was found between genetic identity statistics and geographic distance between populations. Although the range in genetic diversity statistics among populations was unusually large, genetic drift did not appear to play a major role in structuring genetic variation. We conclude that the level of genetic diversity maintained within L. latifolius populations, and the level of population divergence found, is strongly influenced by its status as a cultivated garden flower and its human-associated mode of gene flow via seed dispersal.  相似文献   

20.
Scrub oak populations in the semidesert area of northeastern Arizona and southeastern Utah are ordinarily identified in regional manuals as Quercus undulata. They are very similar, both morphologically and ecologically, to Q. havardii of the Staked Plain of the Texas Panhandle and southeastern New Mexico. They differ, however, in a number of inconspicuous characters. Population sample analyses indicate that most of these differences are suggestive of Q. gambelii, and the deviant populations are thus interpreted as having been derived from ancestral Q. havardii through introgression by Q. gambelii. Two differences are not in accord with this interpretation; these are regarded as possible cases of transgressive segregation. Considering the evolution of these hybridized populations, it is speculated that the ancestral Q. havardii occurred to the south and west of the present range of this species during the Kansan period of the Pleistocene. During subsequent northward dispersal, it became split in two. The eastern portion ultimately came to occupy the present range of the species in the Staked Plain; the western portion—lying to the west of a north-south mountain barrier in central New Mexico—became introgressed by Q. gambelii (and locally by Q. turbinella), resulting in the present populations of Arizona and Utah.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号