首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid protease is essential for degradation of proteins during soy sauce fermentation. To breed more suitable koji molds with high activity of acid protease, interspecific genome recombination between A. oryzae and A. niger was performed. Through stabilization with d-camphor and haploidization with benomyl, several stable fusants with higher activity of acid protease were obtained, showing different degrees of improvement in acid protease activity compared with the parental strain A. oryzae. In addition, analyses of mycelial morphology, expression profiles of extracellular proteins, esterase isoenzyme profiles, and random amplified polymorphic DNA (RAPD) were applied to identify the fusants through their phenotypic and genetic relationships. Morphology analysis of the mycelial shape of fusants indicated a phenotype intermediate between A. oryzae and A. niger. The profiles of extracellular proteins and esterase isoenzyme electrophoresis showed the occurrence of genome recombination during or after protoplast fusion. The dendrogram constructed from RAPD data revealed great heterogeneity, and genetic dissimilarity indices showed there were considerable differences between the fusants and their parental strains. This investigation suggests that genome recombination is a powerful tool for improvement of food-grade industrial strains. Furthermore, the presented strain improvement procedure will be applicable for widespread use for other industrial strains.  相似文献   

2.
Our goal in this work was to develop a method to minimize the chromosomes of Aspergillus oryzae, to arrive at a deeper understanding of essential gene functions that will help create more efficient industrially useful strains. In a previous study, we successfully constructed a highly reduced chromosome 7 using multiple large-scale chromosomal deletions (Jin et al. in Mol Genet Genomics 283:1–12, 2010). Here, we have created a further reduced chromosome A. oryzae mutant harboring a reduced chromosome 7 and a reduced chromosome 8 both of which contain a large number of non-syntenic blocks. These are the smallest A. oryzae chromosomes that have been reported. Protoplast fusion between the two distinct chromosome-reduced mutants produced a vigorous and stable fusant which was isolated. PCR and flow cytometry confirmed that two kinds of nuclei, derived from the parent strains, existed in this fusant and that the chromosome DNA per nucleus was doubled, suggesting that the fusant was a heterozygous diploid strain. By treating the cell with 1 μg/ml benomyl, cell nuclei haploidization was induced in the stable diploid strain. Array comparative genomic hybridization and pulsed-field gel electrophoresis confirmed that the reduced chromosomes 7 and 8 co-existed in the haploid fusant and that no other chromosomal modifications had occurred. This method provides a useful tool for chromosome engineering in A. oryzae to construct an industry-useful strain.  相似文献   

3.
The genome size of the phytoseiid Metaseiulus (=Typhlodromus or Galendromus) occidentalis (Nesbitt) needs to be estimated before the whole nuclear genome can be sequenced. Two different procedures were used to estimate the genome size of M. occidentalis; (1) flow cytometry (Marescalchi et al. in Genome 33:789–793, 1990) and (2) quantitative real-time PCR (qRT-PCR) (Wilhelm et al. in Nucleic Acids Res 31:e56, 2003). Fluorescence intensity of propidium iodide-stained nuclei of M. occidentalis was measured by flow cytometry using females, males, and eggs. Only the eggs yielded peaks, which ranged in size from 35 to 160 Mb, with a tall peak of 140 Mb in 1-day-old eggs and 65 Mb in 2-day-old eggs, respectively. However, the peaks are broad and do not provide an accurate estimate. The qRT-PCR procedure required single-copy nuclear gene sequences from this phytoseiid. This was accomplished by designing degenerate primers, amplifying the Actin and EF1α sequences from M. occidentalis, and then designing M. occidentalis-specific primers that amplified a unique sequence. The standard qRT-PCR protocol was inefficient and amplification failed frequently, so we developed a high-fidelity qRT-PCR protocol, which utilizes a mix of two DNA polymerases (Taq and a proof-reading Tgo or ACCUZYME) to consistently amplify sequences. This allowed us to estimate the nuclear genome size of M. occidentalis as 88–90 ± 5 Mb. When compared to other arthropod genomes, this appears to be very small.  相似文献   

4.
A novel cell-surface display system was constructed in Aspergillus oryzae. Each of the five genes encoding the putative cell-wall-localized protein from the A. oryzae genome was cloned and these cell-surface anchor functions were examined by fusion to the C-terminal of the green fluorescent protein (GFP). Using the MP1 and CWP proteins as anchor proteins, GFP signals were strongly observed on the cell surface of recombinant A. oryzae. When these proteins were used as anchor proteins for cell-surface display of β-glucosidase from A. oryzae, enzyme activity was detected on the cell surface. In particular, β-glucosidase activity of recombinant A. oryzae using MP1, a putative glycosylphosphatidylinositol (GPI) anchor protein was higher than CWP. Based on these results, it was concluded that the MP1 protein can act as a GPI-anchor protein in A. oryzae, and the proposed cell-surface display system using MP1 allows for the display of heterogeneous and endogenous proteins.  相似文献   

5.

Background  

Aspergillus niger is an ascomycetous fungus that is known to reproduce through asexual spores, only. Interestingly, recent genome analysis of A. niger has revealed the presence of a full complement of functional genes related to sexual reproduction [1]. An example of such genes are the dioxygenase genes which in Aspergillus nidulans, have been shown to be connected to oxylipin production and regulation of both sexual and asexual sporulation [24]. Nevertheless, the presence of sex related genes alone does not confirm sexual sporulation in A. niger.  相似文献   

6.
7.
The fructooligosaccharides (FOS) represent an important source of prebiotic compounds that are widely used as an ingredient in functional foods. Recently, the strain Aspergillus oryzae N74 was reported as a potential microorganism for the industrial production of FOS, due to its high yields of FOS production. In this work, we used a PCR-cloning strategy to clone the A. oryzae N74 ftase gene as a previous step for recombinant enzyme production. Ftase showed a 1630 bp size with a 99% similarity with other A. oryzae strains and between 1 to 68% identities with other Aspergillus strains. This gene encodes for a 525 amino acids protein with 99% similarity with other A. oryzae strains and between 11 to 69% similarities with other Aspergillus strains. Finally, an A. oryzae N74 FTase tertiary structure model was predicted base on its similarity with other glycoside hydrolase 32 family members. The active site was located inside the β-propeller domain and was formed for non-charged polar and charged amino acids. In summary, these results shows the high level of sequence conservation between A. oryzae strains and represent a first step towards the development of a FOS production industrial process using recombinant microorganism carrying the ftase gene from A. oryzae N74.  相似文献   

8.
Aspergillus oryzae has received attention as a host for heterologous protein production. However, A. oryzae has 134 protease genes, which is recognized to be one of the major reasons for the proteolytic degradation of heterologously produced proteins. We previously reported that double disruption of the protease genes (tppA and pepE) improved heterologous protein (human lysozyme) production by A. oryzae. In this study, we performed successive round of five protease genes (tppA, pepE, nptB, dppIV, and dppV) disruption in A. oryzae by pyrG marker recycling with highly efficient gene-targeting background (ΔligD). The multiple disruption of protease genes were confirmed by Southern blot analysis. Furthermore, the quintuple protease gene disruptants showed the maximum production level of bovine chymosin (CHY) that was 34% higher than those of the double protease gene disruptant (ΔtppA ΔpepE). Consequently, we successfully constructed a multiple protease gene disruptant bearing enhanced levels of CHY productivity. We presented the first evidence that the quintuple disruption of the protease genes improved the production level of a heterologous protein by A. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
A gene encoding a pyranose 2-oxidase (POx; pyranose/oxygen 2-oxidoreductase; glucose 2-oxidase; EC 1.1.3.10) was identified in the genome of the ascomycete Aspergillus nidulans. Attempts to isolate POx directly from A. nidulans cultures or to homologously overexpress the native POx (under control of the constitutive gpdA promoter) in A. nidulans were unsuccessful. cDNA encoding POx was synthesized from mRNA and expressed in Escherichia coli, and the enzyme was subsequently purified and characterized. A putative pyranose 2-oxidase-encoding gene was also identified in the genome of Aspergillus oryzae. The coding sequence was synthetically produced and was also expressed in E. coli. Both purified enzymes were shown to be flavoproteins consisting of subunits of 65 kDa. The A. nidulans enzyme was biochemically similar to POx reported in literature. From all substrates, the highest catalytic efficiency was found with D-glucose. In addition, the enzyme catalyzes the two-electron reduction of 1,4-benzoquinone, several substituted benzoquinones and 2,6-dichloroindophenol. As judged by the catalytic efficiencies (k cat/k m), some of these quinone electron acceptors are better substrates for pyranose oxidase than oxygen. The enzyme from A. oryzae was physically similar but showed lower kinetic constants compared to the enzyme from A. nidulans. Distinct differences in the stability of the two enzymes may be attributed to a deletion and an insertion in the sequence, respectively.  相似文献   

10.
11.
A novel promoter from a hemolysin-like protein encoding the gene, hlyA, was characterized for protein overexpression in Aspergillus oryzae grown in solid-state culture. Using endo-1,4-β-glucanase from A. oryzae (CelA) as the reporter, promoter activity was found to be higher than that of the α-amylase (amyA) and manganese superoxide dismutase (sodM) genes not only in wheat bran solid-state culture but also in liquid culture. Expression of the A. oryzae endoglucanase CelB and two heterologous endoglucanases (TrEglI and TrEglIII from Trichoderma reesei) under the control of the hlyA promoter were also found to be stronger than under the control of the amyA promoter in A. oryzae grown in wheat bran solid-state culture, suggesting that the hlyA promoter may be useful for the overproduction of other proteins as well. In wheat bran solid-state culture, the productivity of the hlyA promoter in terms of protein produced was high when the cultivation temperature was 30°C or 37°C, when the water content was 0.6 or 0.8 ml/g wheat bran, and from 48 to 72 h after inoculation. Because A. oryzae sporulated actively under these conditions and because hemolysin has been reported to play a role in fungal fruiting body formation, high-level expression of hlyA may be related to sporulation.  相似文献   

12.
In this paper, we provide the first report of utilizing recombinant fungal whole cells in enzymatic biodiesel production. Aspergillus oryzae, transformed with a heterologous lipase-encoding gene from Fusarium heterosporum, produced fully processed and active forms of recombinant F. heterosporum lipase (FHL). Cell immobilization within porous biomass support particles enabled the convenient usage of FHL-producing A. oryzae as a whole-cell biocatalyst for lipase-catalyzed methanolysis. The addition of 5% water to the reaction mixture was effective in both preventing the lipase inactivation by methanol and facilitating the acyl migration in partial glycerides, resulting in the final methyl ester content of 94% even in the tenth batch cycle. A comparative study showed that FHL-producing A. oryzae attained a higher final methyl ester content and higher lipase stability than Rhizopus oryzae, the previously developed whole-cell biocatalyst. Although both FHL and R. oryzae lipase exhibit 1,3-regiospecificity towards triglyceride, R. oryzae accumulated a much higher amount of sn−2 isomers of partial glycerides, whereas FHL-producing A. oryzae maintained a low level of the sn−2 isomers. This is probably because FHL efficiently facilitates the acyl migration from the sn−2 to the sn−1(3) position in partial glycerides. These findings indicate that the newly developed FHL-producing A. oryzae is an effective whole-cell biocatalyst for enzymatic biodiesel production.  相似文献   

13.
We investigated the effect of 2,6‐dimethoxy‐1,4‐benzoquinone (DMBQ) on induced resistance to Magnaporthe oryzae in rice. DMBQ concentrations greater than 50 μg/ml inhibited spore germination and appressorium formation in M. oryzae. When rice leaves pretreated with 10 μg/ml DMBQ, which did not show antifungal activity against spore germination and appressorium formation of M. oryzae, were inoculated with M. oryzae spores 5 days after DMBQ pretreatment, blast lesion formation was inhibited compared with control leaves pretreated with distilled water. In addition, infection‐inhibiting activity against M. oryzae was significantly enhanced in rice leaf sheaths pretreated with 10 μg/ml DMBQ. H2O2 generation was observed in rice leaves pretreated with DMBQ, and PAL, POX, CHS and PR10a were significantly expressed in these leaves. These results suggested that DMBQ can protect rice from blast disease caused by M. oryzae.  相似文献   

14.
The functions of ubiquitin-conjugating enzymes (E2) in plant immunity are not well understood. In this study, OsUBC26, a rice ubiquitin-conjugating enzyme, was characterized in the defence against Magnaporthe oryzae. The expression of OsUBC26 was induced by M. oryzae inoculation and methyl jasmonate treatment. Both RNA interference lines and CRISPR/Cas9 null mutants of OsUBC26 reduced rice resistance to M. oryzae. WRKY45 was down-regulated in OsUBC26 null mutants. In vitro E2 activity assay indicated that OsUBC26 is an active ubiquitin-conjugating enzyme. Yeast two-hybrid assays using OsUBC26 as bait identified the RING-type E3 ligase UCIP2 as an interacting protein. Coimmunoprecipitation assays confirmed the interaction between OsUBC26 and UCIP2. The CRISPR/Cas9 mutants of UCIP2 also showed compromised resistance to M. oryzae. Yeast two-hybrid screening using UCIP2 as bait revealed that APIP6 is a binding partner of UCIP2. Moreover, OsUBC26 working with APIP6 ubiquitinateds AvrPiz-t, an avirulence effector of M. oryzae, and OsUBC26 null mutation impaired the proteasome degradation of AvrPiz-t in rice cells. In summary, OsUBC26 plays important roles in rice disease resistance by regulating WRKY45 expression and working with E3 ligases such as APIP6 to counteract the effector protein AvrPiz-t from M. oryzae.  相似文献   

15.
In the present study, we used gene manipulation to construct a recombinant Aspergillus oryzae strain overexpressing lipase and investigated its application to the optical resolution of chiral compounds. A. oryzae niaD300, which was derived from the wild-type strain RIB40, was used as the host strain. The tglA gene, which encodes a triacylglycerol lipase, was cloned from the A. oryzae niaD300 chromosomal genome, then reintroduced, with and without a secretion-signal sequence, into the genome and expressed under the control of the improved glaA promoter of plasmid pNGA142. The resulting recombinant strain overexpressing A. oryzae lipase was immobilized within biomass-support particles and used as a whole-cell biocatalyst. The immobilized lipase-overexpressing strain with secretion-signal sequence showed high activity and was used to selectively synthesize (R)-1-phenylethyl acetate from (RS)-1-phenylethanol and vinyl acetate. After 48 h reaction at 30°C with molecular sieve 4A, the yield and enantiomeric excess (%ee) of (R)-1-phenylethyl acetate reached approximately 90 and 95%ee, respectively. The whole-cell biocatalyst for optical resolution of chiral compounds produced in this study maintained its activity over 25 batch-reaction cycles.  相似文献   

16.
A polygalacturonase from the filamentous fungus Rhizopus oryzae strain sb (NRRL 29086), previously shown to be effective in the retting of flax fibers, was shown by the analysis of its reaction products on polygalacturonic acid to be an endo-type. By zymogram analysis, the enzyme in the crude culture filtrate appeared as two active species of 37 and 40 kD. The endopolygalacturonase-encoding gene was cloned in Escherichia coli and its translated 383-amino acid sequence found to be identical to that of a presumed exopolygalacturonase found in R. oryzae strain YM9901 and 96% identical to a hypothetical protein (RO3G_04731.1) in the sequenced genome of R. oryzae strain 99–880. Phylogenetic analysis revealed the presence of an unique cluster of Rhizopus polygalacturonase sequences that are separate from other fungal polygalacturonases. Conservation of 12 cysteines appears to be a special feature of this family of Rhizopus polygalacturonase sequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in Moryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.  相似文献   

18.

Background  

The Trypanosoma brucei cell cycle is regulated by combinations of cyclin/CRKs (cdc2 related kinases). Recently, two additional cyclins (CYC10, CYC11) and six new CRK (CRK7-12) homologues were identified in the T. brucei genome database [1,2].  相似文献   

19.
An in vitro regeneration and transient expression systems were developed for the halophyte sea aster (Aster tripolium L.), an important genetic resource for salt tolerance. Adventitious shoots were formed from both leaf explants and suspension-cultured cells in a Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962) basal salts containing 500 mg l−1 casamino acids, and supplemented with 5.4 μM a-naphthaleneacetic acid (NAA) and 4.7 μM kinetin to the culture medium. Hyperhydricity of shoots was avoided by increasing the ventilation of the culture vessel. Root formation from shoots was promoted in the presence of 26.9 μM NAA. A high yield of protoplasts was isolated using 1% cellulase and 0.25% pectinase from both leaf mesophyll and suspension-cultured cells, and these were used for transient expression. The highest level of transient expression of the green fluorescent protein was obtained with 1 × 105 protoplasts ml−1, 25 μg batch−1 of plasmid vector, and 30% polyethylene glycol 4,000.  相似文献   

20.
The aim of this study is to investigate production of l-lactic acid from sucrose and corncob hydrolysate by the newly isolated R. oryzae GY18. R. oryzae GY18 was capable of utilizing sucrose as a sole source, producing 97.5 g l−1 l-lactic acid from 120 g l−1 sucrose. In addition, the strain was also efficiently able to utilize glucose and/or xylose to produce high yields of l-lactic acid. It was capable of producing up to 115 and 54.2 g l−1 lactic acid with yields of up to 0.81 g g−1 glucose and 0.90 g g−1 xylose, respectively. Corncob hydrolysates obtained by dilute acid hydrolysis and enzymatic hydrolysis of the cellulose-enriched residue were used for lactic acid production by R. oryzae GY18. A yield of 355 g lactic acid per kg corncobs was obtained after 72 h incubation. Therefore, sucrose and corncobs could serve as potential sources of raw materials for efficient production of lactic acid by R. oryzae GY18.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号