首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The functional differences between paratropomyosin and tropomyosin were studied. The weight ratio of maximally bound paratropomyosin to F-actin was 1 : 7.6, whereas that of tropomyosin was 1 : 3.9. The actin-myosin interaction was markedly depressed by paratropomyosin under conditions where it was promoted by tropomyosin. Paratropomyosin had sensitized the actin-myosin-troponin system to Ca2+, but was much less effective than tropomyosin. Paratropomyosin showed an additive effect on the actomyosin systems containing tropomyosin, indicating that the binding site of paratropomyosin on F-actin is distinct from that of tropomyosin. Probably, due to greater affinity for myosin binding site on F-actin, paratropomyosin competes for the binding site and thus modifies the actin-myosin interaction. The role of paratropomyosin in tenderization of meat during postmortem ageing is also discussed.  相似文献   

2.
Paratropomyosin is a myofibrillar protein believed to weaken rigor linkages formed between actin and myosin. Using glycerinated fibers of rabbit psoas muscles, we studied the effect of paratropomyosin on the weakening of rigor linkages, which was followed in terms of the increase in sarcomere length of rigor-shortened muscles. The rigor tension developed was reduced to about 65% of the initial value within 10 min after the addition of purified paratropomyosin, whereas it remained constant for at least 3.5 h in control fibers. Paratropomyosin showed a stronger effect on the increase in sarcomere length of passively stretched fibers, which developed weaker rigor-tensions. The purpose of our research was to establish a rigor solution which would best permit the observation of the workings of paratropomyosin. The most successful rigor solution contained 0.2-0.25 M KCl, pH 5.5, at 5-10 degrees C. Under these conditions, the sarcomere length was easily increased from 2.4 to 3.6 micron, if rigor-contracted fibers were passively stretched after the addition of purified paratropomyosin. Because the experimental conditions coincide well with those of postmortem muscles, it is very probable that paratropomyosin plays an important role in restoration of the sarcomere length of rigor-shortened muscles, resulting in tenderization of meat during postrigor ageing.  相似文献   

3.
A protein component which is released from skeletal-muscle myofibrils on the treatment with Ca2+ at concentrations above 10(-5) M and modifies the actin-myosin interaction was purified by a method involving column chromatography on Sephadex G-200 and DEAE-cellulose in succession. Although this protein resembles tropomyosin in some physicochemical properties, it has the same chain weight of 34,000 as the alpha-component of tropomyosin on SDS-polyacrylamide gel electrophoresis, and differed from tropomyosin not only in the amino acid composition but also in prolonging the clearing phase of superprecipitation of reconstituted actomyosin. We therefore concluded that this protein is a new myofibrillar one, and termed it "paratropomyosin." In postrigor muscle, it seems likely that paratropomyosin is released from its original locus with an increased concentration of Ca2+, and that it weakens rigor linkages formed between actin and myosin.  相似文献   

4.
Interaction of actin from chicken gizzard and from rabbit skeletal muscle with rabbit skeletal muscle myosin was compared by measuring the rate of superprecipitation, the activation of the Mg-ATPase and inhibition of K-ATPase activity of myosin and heavy meromyosin, and determination of binding of heavy meromyosin in the absence of ATP. Both the rate of superprecipitation of the hybrid actomyosin and the activation of myosin ATPase by gizzard actin are lower than those obtained with skeletal muscle actin. The activation of myosin Mg-ATPase by the two actin species also shows different dependence on substrate concentration: with gizzard actin the substrate inhibition starts at lower ATP concentration. The double-reciprocal plots of the Mg-ATPase activity of heavy meromyosin versus actin concentration yield the same value of the extrapolated ATPase activity at infinite actin concentration (V) for the two actins and nearly double the actin concentration needed to produce half-maximal activation (Kapp) in the case of gizzard actin. A corresponding difference in the abilities of the two actin species to inhibit the K-ATPase activity of heavy meromyosin in the absence of divalent cations was also observed. The results are discussed in terms of the effect of substitutions in the amino acid sequence of gizzard and skeletal muscle actins on their interaction with myosin.  相似文献   

5.
Caldesmon binds equally to both gizzard actin and actin containing stoichiometric amounts of bound tropomyosin. The binding of caldesmon to actin inhibits the actin-activation of the Mg-ATPase activity of phosphorylated myosin only when the actin contains bound tropomyosin. The reversal of this inhibition requires Ca2+-calmodulin; but it occurs without complete release of bound caldesmon. Although phosphorylation of the caldesmon occurs during the ATPase assay, a direct correlation between caldesmon phosphorylation and the release of the inhibited actomyosin ATPase is not consistently observed.  相似文献   

6.
Tropomyosin movements on thin filaments are thought to sterically regulate muscle contraction, but have not been visualized during active filament sliding. In addition, although 3-D visualization of myosin crossbridges has been possible in rigor, it has been difficult for thick filaments actively interacting with thin filaments. In the current study, using three-dimensional reconstruction of electron micrographs of interacting filaments, we have been able to resolve not only tropomyosin, but also the docking sites for weak and strongly bound crossbridges on thin filaments. In relaxing conditions, tropomyosin was observed on the outer domain of actin, and thin filament interactions with thick filaments were rare. In contracting conditions, tropomyosin had moved to the inner domain of actin, and extra density, reflecting weakly bound, cycling myosin heads, was also detected, on the extreme periphery of actin. In rigor conditions, tropomyosin had moved further on to the inner domain of actin, and strongly bound myosin heads were now observed over the junction of the inner and outer domains. We conclude (1) that tropomyosin movements consistent with the steric model of muscle contraction occur in interacting thick and thin filaments, (2) that myosin-induced movement of tropomyosin in activated filaments requires strongly bound crossbridges, and (3) that crossbridges are bound to the periphery of actin, at a site distinct from the strong myosin binding site, at an early stage of the crossbridge cycle.  相似文献   

7.
Calcium sensitivity of vertebrate skeletal muscle myosin   总被引:3,自引:0,他引:3  
D L Pulliam  V Sawyna  R J Levine 《Biochemistry》1983,22(10):2324-2331
The calcium sensitivity of vertebrate skeletal muscle myosin has been investigated. Adenosinetriphosphatase (ATPase) activity was assayed in a reconstituted system composed of either purified rabbit myosin plus actin or myosin plus actin, tropomyosin, and troponin. The calcium sensitivity of actomyosin Mg-ATPase activity was found to be directly affected by the ionic strength of the assay medium. Actomyosin assayed at approximately physiological ionic strength (120 mM KCl) demonstrated calcium sensitivity which varied between 6 and 52%, depending on the myosin preparation and the age of the myosin. Mg-ATPase activity was increased when calcium was present in the assay medium at physiological ionic strength. Conversely, actomyosin Mg-ATPase activity assayed at a lower ionic strength (15 mM KCl) was inhibited by addition of calcium. Addition of tropomyosin and troponin to the assay increased the calcium sensitivity of the system at the physiological ionic strength still further (up to 99% calcium sensitivity) and conferred calcium sensitivity on the system at the lower ionic strength (greater than 90% calcium sensitivity). A correlation also existed between myosin's calcium sensitivity and the phosphorylated state of light chain 2.  相似文献   

8.
W Nishida  M Abe  K Takahashi  K Hiwada 《FEBS letters》1990,268(1):165-168
A new method for the preparation of smooth muscle thin filaments which include calponin was established. We found that calponin readily separated from thin filaments in the presence of 10 mM ATP. By preventing thin filament extract from exposing to ATP, we obtained thin filaments which contained actin, tropomyosin, caldesmon and calponin in molar ratios of 7:0.9:0.6:0.7. We studied myosin Mg-ATPase activity by using the thin filaments in comparison with classical thin filaments prepared by the method of Marston and Smith, which contained the same amounts of caldesmon and tropomyosin as our thin filaments but lost almost all calponin. The presence of calponin reduced the Vmax value for thin filament-activated myosin Mg-ATPase activity by 33% without a significant change in Km value. These findings suggest that calponin inhibits myosin Mg-ATPase activity by modulation of a kinetic step as an integral component of smooth muscle thin filaments.  相似文献   

9.
The Ca-regulatory system in squid mantle muscle was studied. The findings were as follows. (a) Squid mantle myosin B (squid myosin B) was Ca-sensitive, and its Ca-sensitivity was unaffected by addition of a large amount of rabbit skeletal myosin (skeletal myosin) or rabbit skeletal F-actin (skeletal F-actin). (b) Squid myosin was prepared from the mantle muscle. It showed a heavy chain component and two light chain components in the SDS-gel electrophoretic pattern: the molecular weights of the latter two were 17,000 and 15,000. Actomyosin reconstituted from squid myosin and skeletal (or squid) actin showed Ca-sensitivity in superprecipitation and Mg-ATPase assays. EDTA- treatment had no effect on the Ca-sensitivity of squid myosin. (c) Squid mantle actin (squid actin) was prepared by the method of Spudich and Watt. Hybrid actomyosin reconstituted by using the pure squid actin preparation with skeletal myosin showed no Ca-sensitivity in Mg-ATPase assay, whereas that reconstituted using crude squid actin showed marked Ca-sensitivity. The crude squid actin contained four protein components which were capable of associating with F-actin in 0.1 M KCl, 1 mM MgCl2 and 20 mM Tris-maleate (pH7.5). (d) Native tropomyosin was prepared from squid mantle muscle, and it conferred Ca-sensitivity on skeletal actomyosin as well as on a hybrid actomyosin reconstituted from squid actin and skeletal myosin. (e) Squid native tropomyosin was separated into troponin and tropomyosin fractions by placing it in 0.4 M LiCl at pH 4.7. The troponin fraction was further purified by DEAE-cellulose chromatography. Squid troponin thus obtained was different in mobility from rabbit skeletal or carp dorsal troponin; three bands of squid troponin corresponded to molecular weights of 52,000, 28,000, and 24,000 daltons. It could confer Ca-sensitivity in the presence of tropomyosin on skeletal actomyosin as well as on a hybrid reconstituted from squid actin and skeletal myosin. (f) Squid myosin B, and two hybrid actomyosins were compared as regards Ca and Sr requirements for their Mg-ATPase activities. The myosin-linked regulatory system rather than the thin-filament-linked regulatory system was predominant in squid myosin B. Squid myosin B required higher Ca2+ and Sr2+ concentrations for Mg-ATPase activity; half-maximal activation of Mg-ATPase was obtained at 0.8 micron Ca2+ and 28 micron Sr2+ with skeletal myosin B, and at 2.5 micron Ca2+ and 140 micron Sr2+ with squid myosin B.  相似文献   

10.
Using polyclonal antibodies against paratropomyosin, which is believed to modify the actin-myosin interaction in postrigor skeletal muscles, we studied the localization of paratropomyosin in chicken breast muscle myofibrils. Intact myofibrils stained with fluorescent antibodies showed that paratropomyosin was exclusively located at the A-I junction region of sarcomeres. In stretched myofibrils (3.7 micron in sarcomere length), the approximate width of the fluorescent stripes and their relation to the A band remained constant. Removal of the A band from myofibrils led to loss of stainability. During postmortem storage of muscles, on the other hand, paratropomyosin was translocated from its original position at the A-I junction region onto thin filaments. The translocation of paratropomyosin was successfully induced with a calcium ion concentration of 10(-4) M in the presence of protease inhibitors. We therefore conclude that in postrigor muscles, paratropomyosin is released from the A-I junction region following the increase in the sarcoplasmic calcium ion concentration to 10(-4) M, and then binds to thin filaments, which results in weakening of rigor linkages formed between actin and myosin.  相似文献   

11.
The effects of caldesmon on structural and dynamic properties of phalloidin-rhodamine-labeled F-actin in single skeletal muscle fibers were investigated by polarized microphotometry. The binding of caldesmon to F-actin in glycerinated fibers reduced the alterations of thin filaments structure and dynamics that occur upon the transition of the fibers from rigor to relaxing conditions. In fibers devoid of myosin and regulatory proteins (ghost fibers) the binding of caldesmon to F-actin precluded structural changes in actin filaments induced by skeletal muscle myosin subfragment 1 and smooth muscle tropomyosin. These results suggest that the restraint for the alteration of actin structure and dynamics upon binding of myosin heads and/or tropomyosin evoked by caldesmon can be related to its inhibitory effect on actin-myosin interaction.  相似文献   

12.
Regulation of myosin and filamentous actin interaction by tropomyosin is a central feature of contractile events in muscle and nonmuscle cells. However, little is known about molecular interactions within the complex and the trajectory of tropomyosin movement between its "open" and "closed" positions on the actin filament. Here, we report the 8 ? resolution structure of the rigor (nucleotide-free) actin-tropomyosin-myosin complex determined by cryo-electron microscopy. The pseudoatomic model of the complex, obtained from fitting crystal structures into the map, defines the large interface involving two adjacent actin monomers and one tropomyosin pseudorepeat per myosin contact. Severe forms of hereditary myopathies are linked to mutations that critically perturb this interface. Myosin binding results in a 23 ? shift of tropomyosin along actin. Complex domain motions occur in myosin, but not in actin. Based on our results, we propose a structural model for the tropomyosin-dependent modulation of myosin binding to actin.  相似文献   

13.
The mechanism for the potentiation of the actin-activated ATPase of smooth muscle myosin by tropomyosin is investigated using smooth muscle actin, tropomyosin, and heavy meromyosin. In the presence of tropomyosin, an increase in Vmax occurs with no effect on KATPase and Kbinding at 20 mM ionic strength. Utilizing N-ethylmaleimide-treated subfragment-1, which forms rigor complexes with actin in the presence of ATP but does not have ATPase activity, experiments were carried out to determine if the tropomyosin-actin complex exists in both the turned-off and turned-on forms as in the skeletal muscle system. At both 60 and 100 mM ionic strengths, the presence of rigor complexes on the smooth muscle actin filament containing bound tropomyosin causes a 2-3-fold increase in Vmax and about a 3-fold increase in KATPase, resulting in about a 4-fold increase in ATPase activity at moderate actin concentration. The increase in KATPase is correlated with an increase in Kbinding. The finding that rigor complexes increase Vmax and the binding constant for heavy meromyosin to tropomyosin-actin at an ionic strength close to physiological conditions indicates that the tropomyosin-actin complex can be turned on by rigor complexes in a cooperative manner. However, in contrast to the situation in the skeletal muscle system, the increase in KATPase is associated with a corresponding increase in Kbinding. Furthermore, there is only a 3-fold increase in KATPase in the smooth muscle system rather than a 10-fold increase as in the skeletal muscle system.  相似文献   

14.
The binding of 125I- and 14C-caldesmon to actin and actin-tropomyosin was studied using a cosedimentation technique and was analyzed by the method of McGhee and von Hippel [1974) J. Mol. Biol. 86, 469-489) for the binding of large ligands to a homogeneous lattice. The binding was adequately described by a single class of binding sites with a stoichiometry between 1:7 and 1:10. The binding exhibited a small degree of positive cooperativity (omega = 5-6) which was the same in the presence and absence of tropomyosin. The association constant for the binding of caldesmon to an isolated binding site was enhanced, from about 6 X 10(5) to about 1.4 X 10(6) M-1, by the presence of smooth muscle tropomyosin. Caldesmon inhibited the actin-activated ATPase activity of skeletal myosin subfragment 1 in both the absence and presence of tropomyosin. Maximum inhibition of ATPase activity occurred when one caldesmon molecule bound to seven actin monomers. A greater degree of inhibition was observed in the presence of tropomyosin than in the absence. This greater inhibition cannot be explained totally by the increased strength of binding of caldesmon to actin in the presence of tropomyosin. Finally, Ca2+-calmodulin completely reversed the binding of caldesmon to actin.  相似文献   

15.
N D Vu  P D Wagner 《Biochemistry》1987,26(15):4847-4853
Limited proteolysis was used to identify regions on the heavy chains of calf thymus myosin which may be involved in ATP and actin binding. Assignments of the various proteolytic fragments to different parts of the myosin heavy chain were based on solubility, gel filtration, electron microscopy, and binding of 32P-labeled regulatory light chains. Chymotrypsin rapidly cleaved within the head of thymus myosin to give a 70,000-dalton N-terminal fragment and a 140,000-dalton C-terminal fragment. These two fragments did not dissociate under nondenaturing conditions. Cleavage within the myosin tail to give heavy meromyosin occurred more slowly. Cleavage at the site 70,000 daltons from the N-terminus of the heavy chain caused about a 30-fold decrease in the actin concentration required to achieve half-maximal stimulation of the magnesium-adenosinetriphosphatase (Mg-ATPase) activity of unphosphorylated thymus myosin. The actin-activated ATPase activity of this digested myosin was only slightly affected by light chain phosphorylation. Actin inhibited the cleavage at this site by chymotrypsin. In the presence of ATP, chymotrypsin rapidly cleaved the thymus myosin heavy chain at an additional site about 4000 daltons from the N-terminus. Cleavage at this site caused a 2-fold increase in the ethylenediaminetetraacetic acid-ATPase activity and 3-fold decreases in the Ca2+- and Mg-ATPase activities of thymus myosin. Thus, cleavage at the N-terminus of thymus myosin was affected by ATP, and this cleavage altered ATPase activity. Papain cleaved the thymus myosin heavy chain about 94,000 daltons from the N-terminus to give subfragment 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Ali LF  Cohen JM  Tobacman LS 《Biochemistry》2010,49(51):10873-10880
Tropomyosin is a ubiquitous actin-binding protein with an extended coiled-coil structure. Tropomyosin-actin interactions are weak and loosely specific, but they potently influence myosin. One such influence is inhibitory and is due to tropomyosin's statistically preferred positions on actin that sterically interfere with actin's strong attachment site for myosin. Contrastingly, tropomyosin's other influence is activating. It increases myosin's overall actin affinity ~4-fold. Stoichiometric considerations cause this activating effect to equate to an ~4(7)-fold effect of myosin on the actin affinity of tropomyosin. These positive, mutual, myosin-tropomyosin effects are absent if Saccharomyces cerevisiae tropomyosin replaces mammalian tropomyosin. To investigate these phenomena, chimeric tropomyosins were generated in which 38-residue muscle tropomyosin segments replaced a natural duplication within S. cerevisiae tropomyosin TPM1. Two such chimeric tropomyosins were sufficiently folded coiled coils to allow functional study. The two chimeras differed from TPM1 but in opposite ways. Consistent with steric interference, myosin greatly decreased the actin affinity of chimera 7, which contained muscle tropomyosin residues 228-265. On the other hand, myosin S1 increased by an order of magnitude the actin affinity of chimera 3, which contained muscle tropomyosin residues 74-111. Similarly, myosin S1-ADP binding to actin was strengthened 2-fold by substitution of chimera 3 tropomyosin for wild-type TPM1. Thus, a yeast tropomyosin was induced to mimic the activating behavior of mammalian tropomyosin by inserting a mammalian tropomyosin sequence. The data were not consistent with direct tropomyosin-myosin binding. Rather, they suggest an allosteric mechanism, in which myosin and tropomyosin share an effect on the actin filament.  相似文献   

17.
K Y Horiuchi  S Chacko 《Biochemistry》1989,28(23):9111-9116
The 38-kDa chymotryptic fragment of caldesmon, which possesses the actin/calmodulin binding domain, was purified and utilized to study the mechanism for the inhibition of acto-myosin ATPase by caldesmon. The intact caldesmon inhibited the acto-HMM ATPase although it caused an increase in the binding of HMM to actin, presumably due to the interaction between the S-2 region of HMM and the caldesmon located on the actin filament. The 38-kDa fragment, which lacks the S-2 binding domain, inhibited both the acto-HMM ATPase and the HMM binding to actin. The ATPase and the HMM binding to actin decreased in parallel on increasing the 38-kDa fragment bound to actin. In the presence of tropomyosin, the ATPase activity fell more rapidly than did the HMM binding to actin. Binding of intact caldesmon or 38-kDa fragment to actin inhibited the cooperative turning-on of tropomyosin-actin by NEM.S-1, which forms rigor complexes in the presence of ATP. The absence of cooperative turning-on of the acto-HMM ATPase by rigor complexes in the presence of 38-kDa fragment was associated with an inhibition of the binding of HMM to tropomyosin-actin. Addition of NEM.S-1 to tropomyosin-actin-caldesmon caused a gradual decrease in the caldesmon-induced binding of HMM to actin. The calmodulin restored the caldesmon-induced binding of HMM to tropomyosin-actin, but it had only a slight effect on the acto-HMM ATPase. These data suggest that the cooperative turning-on of the smooth muscle tropomyosin-actin by rigor bonds is modulated by the interaction of caldesmon, tropomyosin, and calmodulin on the thin filament.  相似文献   

18.
We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.  相似文献   

19.
Actin, myosin, and "native" tropomyosin (NTM) were separately isolated from chicken gizzard muscle and rabbit skeletal muscle. With various combinations of the isolated contractile proteins, Mg-ATPase activity and superprecipitation activity were measured. It was thus found that gizzard myosin and gizzard NTM behaved differently from skeletal myosin and skeletal NTM, whereas gizzard actin functioned in the same wasy as skeletal actin. It was also found that gizzard myosin preparations were often Ca-sensitive, that is, that the two activities of gizzard myosin plus actin without NTM were activated by low concentrations of Ca2+. The Mg-ATPase activity of a Ca-insensitive preparation of gizzard myosin was not activated by actin even in the presence of Ca2+. When Ca-sensitive gizzard myosin was incubated with ATP (and Mg2+) in the presence of Ca2+, a light-chain component of gizzard myosin was phosphorylated. The light-chain phosphorylation also occurred when Ca-insensitive myosin was incubated with gizzard NTM and ATP (plus Mg2+) in the presence of Ca2+. In either case, the light-chain phosphorylation required Ca2+. Phosphorylated gizzard myosin in combination with actin was able to exhibit superprecipitation, and Mg-ATPase of the phosphorylated gizzard myosin was activated by actin; the actin activation and superprecipitation were found to occur even in the absence of Ca2+ and NTM or tropomyosin. The phosphorylated light-chain component was found to be dephosphorylated by a partially purified preparation of gizzard myosin light-chain phosphatase. Gizzard myosin thus dephosphorylated behaved exactly like untreated Ca-insensitive gizzard myosin; in combination with actin, it did not superprecipitate either in the presence of Ca2+ or in its absence, but did superprecipitated in the presence of NTM and Ca2+. Ca-activated hydrolysis of ATP catalyzed by gizzard myosin B proceeded at a reduced rate after removal of Ca2+ (by adding EGTA), whereas that catalyzed by a combination of actin, gizzard myosin, and gizzard NTM proceeded at the same rate even after removal of Ca2+. However, addition of a partially purified preparation of gizzard myosin light-chain phosphatase was found to make the recombined system behave like myosin B. Based on these findings, it appears that myosin light-chain kinase and myosin light-chain phosphatase can function as regulatory proteins for contraction and relaxation, respectively, of gizzard muscle.  相似文献   

20.
New data on the movements of tropomyosin singly labeled at alpha- or beta-chain during the ATP hydrolysis cycle in reconstituted ghost fibers have been obtained by using the polarized fluorescence technique which allowed us following the azimuthal movements of tropomyosin on actin filaments. Pronounced structural changes in tropomyosin evoked by myosin heads suggested the "rolling" of the tropomyosin molecule on F-actin surface during the ATP hydrolysis cycle. The movements of actin-bound tropomyosin correlated to the strength of S1 to actin binding. Weak binding of myosin to actin led to an increase in the affinity of the tropomyosin N-terminus to actin with simultaneous decrease in the affinity of the C-terminus. On the contrary, strong binding of myosin to actin resulted in the opposite changes of the affinity to actin of both ends of the tropomyosin molecule. Caldesmon inhibited the "rolling" of tropomyosin on the surface of the thin filament during the ATP hydrolysis cycle, drastically decreased the affinity of the whole tropomyosin molecule to actin, and "freezed" tropomyosin in the position characteristic of the weak binding of myosin to actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号