首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Changes in the levels of amino acids have been implicated as being important in osmoregulation both within and outside the CNS. The present study addressed the question of whether changes in osmolarity affect the extracellular concentration of amino acids in the rat hippocampus and femoral biceps muscle (FBM). Microdialysis probes were implanted in these tissues and perfused with standard physiological saline. Amino acid concentrations in the dialysate were determined with HPLC separation of o-phthaldialdehyde derivatives and fluorescence detection. The osmolarity of the perfusion buffer was gradually decreased by reduction of the concentration of NaCl from 122 to 61 to 0 mM. In other experiments, the osmolarity was increased by elevation of the NaCl level from 122 to 183 to 244 mM or by addition of mannitol. Glutamate, aspartate, gamma-aminobutyrate, and alanine levels in dialysate from the hippocampus increased when the concentration of NaCl was decreased by 61 mM, and they were further elevated when NaCl was omitted. Taurine and phosphoethanolamine (PEA) levels were maximally elevated at the intermediary decrease of NaCl concentration, and glutamine in particular but also methionine and leucine were suppressed by perfusion with hypoosmolar medium. The amino acid response of the FBM differed substantially from that of the hippocampus. The aspartate content increased slightly, and there was a marginal transient increase in PEA level. Perfusion with media containing high concentrations of NaCl induced diminished dialysate levels of taurine, PEA, and glutamate, whereas levels of other amino acids were either unaffected or increased. Mannitol administration via the perfusion fluid led to reduced levels of taurine, PEA, glutamate, and aspartate. In contrast to the effects of high NaCl levels, hyperosmotic mannitol did not induce increases in level of any of the amino acids detected. The results suggest that taurine and PEA are involved in osmoregulation in the mammalian brain. From a quantitative viewpoint, taurine seems to be most important. Transmitter amino acids may also be involved in the maintenance of the volume of neural cells subjected to severe disturbances in osmotic equilibrium.  相似文献   

2.
Recent investigations have demonstrated that taurine and phosphoethanolamine (PEA) are the amino acids most sensitive to microdialysis-perfusion with reduced concentrations of NaCl. The aim of the present work was to assess the importance of Na+ deficiency in evoking this response. Further, the previously described selectivity of replacement of Cl- with acetate with respect to amino acid release was reinvestigated. The hippocampus of urethane-anesthetized rats was dialyzed with Krebs-Ringer bicarbonate buffer, and amino acid concentrations of the perfusate were determined. Choline chloride was then stepwise substituted for NaCl, and, in some cases, mannitol (122 mM) was included in low sodium-containing media. In other experiments, NaCl was replaced with sodium acetate. The dialysate levels of taurine increased selectively in response to Na+ substitution. The elevation of taurine was linearly related to the increase in choline chloride, and maximal levels amounted to 335% of basal levels. The increase in extracellular taurine was not inhibited by perfusion with medium made hyperosmotic with mannitol. Replacement of Cl- with acetate stimulated the release of taurine to 652% of resting levels. In addition, PEA levels increased to 250% of control concentration. Other amino acids were unaffected by Cl- substitution. The results show that taurine transport is considerably more sensitive to Na+ depletion than glutamate transport, which also is known to be Na+ dependent. The taurine increase evoked by low Na+ is not caused by cellular swelling as it was unaffected by hyperosmolar medium. Finally, substitution of acetate for Cl- causes a specific elevation of extracellular taurine and PEA, possibly as a result of cytotoxic edema.  相似文献   

3.
Abstract: N -Acetylaspartate (NAA) is characterized by a high tissue-to-extracellular concentration ratio under normal conditions and is released from neurons during hyposmotic cell swelling. As cell volume regulation and acid-base homeostasis share common processes, we have examined by microdialysis whether the extracellular concentration of NAA is altered by various acidotic challenges. Twenty-minute perfusion of 50 m M NH4+ through the microdialysis probe progressively lowered dialysate pH by 0.18, followed by a sudden, additional reduction after NH4+ removal. The latter effect indicated extrusion of cellular H+ because it was suppressed by blockade of Na+/H+ exchange with 5-( N,N -dimethyl)amiloride (1 or 5 m M in perfusion medium). NH4+ increased dialysate levels of NAA and lactate by approximately two- and threefold their initial values, respectively. These data demonstrate that pronounced intracellular acidosis is associated with NAA efflux, presumably from neurons. Whether this effect is linked directly to acid-base homeostasis or is secondary to acidosis-induced cell swelling remains to be clarified. Hypercapnia and perfusion of acid medium failed to increase dialysate NAA, probably because acidosis was not severe enough or the associated cellular swelling was not followed by regulatory volume decrease. As cellular swelling and acidosis are key features of cerebral ischaemia, further investigations into the role of NAA, and the development of sophisticated magnetic resonance spectroscopic methods capable of resolving intra-/extracellular NAA redistribution, would be especially relevant to clinical practice.  相似文献   

4.
为建立龙珠果(Passiflora foetida)的快繁再生体系,以实生苗茎段为外植体,研究了植物生长调节剂对丛生芽诱导、壮苗生根的影响,同时对组培苗的耐盐性进行研究.结果表明,MS+6-BA 0.5 mg/L+NAA 0.05 mg/L培养基有利于诱导丛生芽并促进芽的生长;MS+6-BA 3.0 mg/L+NAA ...  相似文献   

5.
Investigation into the Role of N-Acetylaspartate in Cerebral Osmoregulation   总被引:4,自引:3,他引:1  
Abstract: Marked abnormalities of the magnetic resonance intensity of N -acetylaspartate (NAA) have been reported in patients with various neurological disorders, but the neurochemical consequences of these alterations are difficult to assess because the function of NAA remains speculative. The purpose of this study was to examine whether NAA plays a role in protecting neurons against osmotic stress. Intracerebral microdialysis was used to expose a small region of the rat dorsolateral striatum to an increasingly hyposmotic environment and to measure resulting changes in NAA extracellular concentrations. NAA changes in the extracellular fluid (ECF) were compared with those of the amino acids, in particular, taurine, known to be involved in brain osmoregulation. Stepped increases in cellular hydration produced by hyposmotic perfusion media induced a marked increase in ECF NAA, reflecting a redistribution of NAA from intra-to extracellular space. Parallel experiments showed that, of all the extracellular amino acids measured, only taurine markedly increased with hyposmolar perfusion medium, indicating that the ECF NAA increase associated with hyposmotic stress was a specific response and not passive leakage out of the cells. As NAA is predominantly neuronal, it may contribute to the protection of neurons against swelling (i.e., regulatory volume decrease). In conditions with impaired blood-brain barrier and cytotoxic oedema, efflux of intracellular NAA subsequent to sustained cellular swelling might lead to a reduction in total brain NAA detectable by magnetic resonance spectroscopy. Alternatively, redistribution of NAA from intra-to extracellular space implies changes in its chemical environment that may alter its magnetic resonance visibility.  相似文献   

6.
Callus cultures were initiated from soybean (Glycine max (L.) Merr cv. Acme) cotyledons onMiller's basal medium supplemented with 2 mg L–1NAA and 0.5 mg L–1 kinetin. Growing cells wereexposed to increasing concentrations of NaCl in themedium. A concentration of 100 mM NaCl completelyinhibited callus growth. After incubation for 28 d,cells which could tolerate this concentration of NaClgrew to form cell colonies. A NaCl-tolerant line wasobtained through continuous subculturing on 100 mMNaCl. Salt tolerance in this culture was characterizedby an altered growth behavior, reduced cell volume, and accumulation of Na+, Cl, proline and sugars when grown under salt stress, as well as on normal media. These characteristics, which proved tobe stable after the culture was transferred to asalt-free medium, is commonly associated with halophytes. Presented data suggest that this salt tolerance is the result of a shift towards a halophytic behavior.  相似文献   

7.
Abstract: Recent studies have shown that the neuropeptides arginine-8-vasopressin (AVP) and oxytocin (OXT) are released within the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to microdialysis of these nuclei with high-NaCl perfusion media. These results suggest an inherent osmosensitivity of SON and PVN neurons. To investigate whether the observed release of AVP/OXT is a unique phenomenon to these neuropeptides, several brain regions were examined for the release of amino acids or dopamine in response to high- or low-NaCl stimulation. Urethane-anesthetized male Sprague-Dawley rats were perfused with five-ion solution using U-shaped microdialysis probes. Samples were collected at 30-min intervals and analyzed for amino acids and dopamine by HPLC. In the dialysates of all perfusion areas, including the SON, PVN, hippocampus, and striatum, concentrations of Asp, Glu, Ser, Gln, Gly, taurine (Tau), and γ-aminobutyric acid (GABA) were significantly increased during perfusion with high-NaCl medium. This release was found to be dose dependent when tested in the hippocampus and striatum with perfusion medium containing 0.5 or 1.0 M NaCl. However, only the release of Glu and Ser was found to be Ca2+ dependent. In contrast, the use of mannitol, a nonionic osmolyte, for perfusions in the striatum in concentrations of 0.5 and 1 M resulted in reduced levels of amino acids in the dialysates (Glu, Ser, Gln, and Tau). Low-NaCl perfusion medium (0.01 M) resulted in significantly increased Glu, Tau, Gly, and GABA levels in the striatum. In addition, dopamine levels in striatal dialysates were significantly increased during stimulation with 1 M NaCl. These results indicate that stimulation with high NaCl concentrations affects the release of several neurotransmitters and is not specific for AVP and OXT. The described phenomenon of the release of amino acids in response to this stimulation seems to be a response to the changed ionic concentration rather than to the osmolality. In light of these findings shown for amino acids and dopamine as well as those previously reported for AVP, OXT, and angiotensin, it would appear that sensitivity to tonicity changes brought about by microdialysis may be a feature of many transmitter systems.  相似文献   

8.
Substantia nigra osmoregulation: taurine and ATP involvement   总被引:2,自引:0,他引:2  
An extracellular nonsynaptic taurine pool of glial origin was recently reported in the substantia nigra (SN). There is previous evidence showing taurine as an inhibitory neurotransmitter in the SN, but the physiological role of this nonsynaptic pool of taurine has not been explored. By using microdialysis methods, we studied the action of local osmolarity on the nonsynaptic taurine pool in the SN of the rat. Hypoosmolar pulses (285-80 mosM) administered in the SN by the microdialysis probe increased extrasynaptic taurine in a dose-dependent way, a response that was counteracted by compensating osmolarity with choline. The opposite effect (taurine decrease) was observed when osmolarity was increased. Under basal conditions, the blockade of either the AMPA-kainate glutamate receptors with 6-cyano-7-nitroquinoxaline-2,3-dionine disodium or the purinergic receptors with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid modified the taurine concentration, suggesting that both receptors modulate the extrasynaptic pool of taurine. In addition, these drugs decreased the taurine response to hypoosmolar pulses, suggesting roles for glutamatergic and purinergic receptors in the taurine response to osmolarity. The participation of purinergic receptors was also supported by the fact that ATP (which, under basal conditions, increased the extrasynaptic taurine in a dose-dependent way) administered in doses saturating purinergic receptors also decreased the taurine response to hypoosmolarity. Taken together, present data suggest osmoregulation as a role of the nonsynaptic taurine pool of the SN, a function that also involves glutamate and ATP and that could influence the nigral cell vulnerability in Parkinson's disease. substantia nigra; swelling; Parkinson's disease  相似文献   

9.
Effects of taurine on Ca++ binding to microsomes isolated from rat cerebral cortex were investigated in a medium containing various concentrations of KCl and/or NaCl. Calcium binding to microsomes was inhibited in a dose-dependent fashion by taurine in the incubation medium containing 5 mM KCl and 115 mM NaCl, while there was no inhibition in the medium containing 115 mM KCl and 5 mM NaCl. Taurine also decreased Ca++ binding in the medium containing 70 mM KCl without NaCl. A similar tendency toward inhibition of the Ca++ binding was observed in the medium with 5 mM or 120 mM KCl without NaCl. Taurine did not influence the Ca++ binding in the medium containing different concentrations of NaCl without KCl, or in the medium from which KCl and NaCl were omitted. Isethionate, glycine, γ-aminobutyric acid, β-alanine and L-leucine did not significantly alter the Ca++ binding to microsomes in the medium containing 70 mM KCl without NaCl. Thus it would appear that taurine may modulate the binding of calcium to microsomes in conditions which resemble the state of depolarization, while it is inactive in the normal resting state. This effect is apparently specific to taurine amongst a series of putative “inhibitory” amino acids.  相似文献   

10.
The medium of tomato (Lycopersicon esculentum) cells adapted to grow in the presence of 15 g l–1 NaCl had a higher peroxidase activity than the medium of an unadapted tomato cell line. When the adapted cells were cultured in a medium without NaCl, the value found for peroxidase activity was intermediate. The increase in peroxidase activity was parallel to an increase of lignin-like compounds in the cell walls, as well as to an increased content or appearance of neutral and basic peroxidase isoenzymes. Apparently, the high values of peroxidase activity in the medium of the salt-adapted cells reflect the changed mechanical properties of the cell wall which, in turn, could be related to the salt adaptation process.Abbreviations LO Control tomato cell line unable to grow in the presence of 15 g 1–1 of NaCl - L15 tomato cell line adapted to 15 g 1–1 of NaCl and growing in this salt concentration - L15-0 tomato cell line adapted to 15 g 1–1 of NaCl and growing in the absence of this salt - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - PBS phosphate buffer saline  相似文献   

11.
银杏愈伤组织诱导的多因子正交试验研究   总被引:2,自引:0,他引:2  
采用正交试验设计法,研究了NAA、KT、2,4-D、蔗糖浓度和不同外植体类型等因素对银杏愈伤组织诱导的影响。结果表明:不同外植体类型对银杏愈伤组织诱导率影响最大,KT和NAA其次,2,4-D和蔗糖浓度最小。银杏愈伤组织诱导最佳培养基为MS+NAA 0.5 mg·L-1+KT 0.5 mg·L-1+蔗糖40 g·L-1,最佳外植体为茎段,其愈伤组织诱导率可达100%。  相似文献   

12.
The production of an intracellular secondary metabolite rosmarinic acid (RA) by plant cell suspensions of Anchusa officinalis cultivated with intermittent medium exchange is investigated. Initially, a two-stage perfusion culture method was employed. After being cultured in the batch mode for ca. 6 days in B5 medium plus 3% sucrose, 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.1 mg/L kinetin (2,4-D B5 medium), Anchusa culture was cultivated to high cell density by perfusion during the growth stage using a hormone-free Gamborg B5 medium supplemented with 6% sucrose. This was followed by a production stage, in which a complete medium exchange into B5 medium plus 3% sucrose and 0.25 mg/L naphthleneacetic acid (NAA) was conducted. The two-stage perfusion culture had a higher maximum culture RA concentration but a lower RA content per cell than the batch stock culture maintained in the 2,4-D B5 medium. Higher culture RA concentration was due primarily to high cell density. The high packed cell volume, however, seemed to reduce the synergistic effect of NAA on RA synthesis. Subsequently, a single-stage perfusion culture method was investigated. The best result was obtained by growing the culture in the batch mode for ca. 10 days using B5 medium supplemented with 3% sucrose and 0.25 mg/L NAA, followed by perfusing the culture with B5 medium plus 6% sucrose and 0.25 mg/L NAA at a constant perfusion rate of 0.1/day. A maximum cell dry weight of 35 g/L and a RA concentration of almost 4 g/L were achieved. This is the highest RA concentration ever reported in the Anchusa culture. (c) 1993 John Wiley & Sons, Inc.  相似文献   

13.
Summary Dogwood anthracnose, caused by the fungus Discula destructiva Redlin, is a severe disease of flowering dogwood (Cornus florida L.) and Pacific dogwood (C. nuttallii Aud.). Disease control is inadequate in nurseries and landscapes and absent in the forest, and resistant cultivars are not commercially available. The ability to select tissues insensitive to culture filtrates from D. destructiva in vitro offers a novel and important approach for the selection of dogwood genotypes that are resistant to or tolerant of this devastating fungus. Embryo-derived dogwood callus cultures were established on Murashige and Skoog medium amended with benzyladenine (BA) and either 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA). Selection for insensitivity to D. destructiva metabolites was done by placement of individual cultures on media amended with progressively higher concentrations of a partially purified culture filtrate (PPCF) containing lowmolecular-weight compounds. Following this selection process, cultures were challenged in a dose-response format with PPCF to determine whether the sensitivity of the callus to the culture filtrate had changed. During the selection period, the fresh weight of callus grown on medium containing 2,4-D and amended with PPCF was always less than that of callus grown on medium amended with the same concentration of potato-dextrose broth (PDB, negative control). Fresh weight of callus was greater on medium containing NAA amended with PPCF than on medium with the same concentration of PDB. Callus selected in the presence of NAA showed decreased sensitivity to toxic metabolites at higher concentrations of culture filtrate. The in vitro system described may assist in the identification of disease-resistant germplasm important to the long-term survival of flowering dogwood.  相似文献   

14.
Cotyledon explants of Brassica tournefortii L. were excised from germinated seedlings and cultured on Murashige & Skoog's [6] basal medium supplemented with various combinations of cytokinins and auxins, Both cytokinin and auxin were required for induction of shoot organogenesis. Of the three cytokinins tested (in combination with a low concentration of IAA), kinetin was found to be the best for shoot regeneration. On this medium, cotyledonary explants invariably underwent callusing followed by multiple shoot formation. NAA in combination with any of the three cytokinins yielded a reduced number of shoots or none, but favoured good callus growth. Callus so produced also regenerated shoots when subcultured on media containing high concentration of KIN or ZEA and low concentration of IAA. Shoots were rooted during prolonged incubation on the same medium or on MS medium free of growth regulators. Mature plants were grown in the greenhouse.  相似文献   

15.
The in vitro response of kiwifruit (Actinidia deliciosa) to increasing concentrations of boron (B) and NaCl in the culture medium was studied. Kiwifruit shoot cultures were grown in vitro for 12 weeks on an MS medium containing two B concentrations (0.1 and 2 mM) combined with five NaCl concentrations (0, 10, 20, 40 and 80 mM). Kiwifruit produced the longest shoots with 2 mM B when NaCl concentration was 0--20 mM. More shoots were produced with 2 mM B for all NaCl treatments. More shoots were produced with 2 mM B and 10 and 20 mM NaCl. High B concentrations in the culture medium significantly increased shoot proliferation. Explants exhibited a moderate chlorotic appearance with 40 mM NaCl and shoots died with 80 mM NaCl. With 2 mM B, the B concentration of explants was 5--9X greater for the various NaCl treatments compared to the control. Increasing the NaCl concentration from 10 to 80 mM, resulted in higher Na and Cl concentrations in explants for all B treatments, while K and Ca concentrations decreased. Phosphorus concentration in the explants was significantly increased by increasing the NaCl concentration reaching a maximum value at 80 mM NaCl for the two B concentrations.  相似文献   

16.
Abstract: We evaluated the changes of interstitial N -acetylaspartate (NAA) concentration ([NAA]e) in rat striatum by microdialysis following transient global ischemia and depolarization. The dialysate NAA concentration ([NAA]d) values were corrected for the in vivo recovery to obtain [NAA]e, by the use of [3H]mannitol in the perfusion fluid. During global ischemia the relative loss (RL) of [3H]mannitol decreased to 40% of preischemic values, reflecting the decrease in extracellular volume fraction. During reperfusion RL of [3H]mannitol quickly normalized. The [NAA]d doubled during transient ischemia, which, after correction for in vivo recovery, corresponds to a fivefold increase in [NAA]e ( p < 0.05). Reperfusion induced a >10-fold increase of [NAA]e ( p < 0.01) with subsequent normalization after 45 min. KCI at 100 m M caused a reversible 50% reduction in RL of [3H]mannitol and a three times increase in [NAA]e ( p < 0.05) but no further increase when normal perfusate was reintroduced. The mechanisms of NAA release from neurons are unknown but may involve the activation of unknown channels/carriers—possibly in relation to a volume regulatory response. The present study shows that the distribution of NAA in brain is dynamically regulated in acute ischemia and suggests that changes of NAA levels could be caused by other means than neuronal loss.  相似文献   

17.
Summary The effects of NaCl and CaCl2 on shoot regeneration from quince (Cydonia oblonga BA L29 clone) leaves were investigated. Caulogenesis was induced on in vitro-grown leaves treated for 2d in liquid Murashige and Skoog (MS) medium with 11.3 μM 2,4-dichlorophenoxyacetic acid and cultured on MS gelled medium supplemented with 4.5 μM thidiazuron and 0.5 μM naphthaleneacetic acid. Three experiments were performed: in the first, we compared the effects of NaCl at 0, 25, 50, 100, and 200 mM in factorial combination with 3, 9, and 27 mM CaCl2. In the second, NaCl was tested at 0, 5, 10, 20, 40, and 80 mM with CaCl2 at 0.3, 1.0, and 3.0 mM. The third experiment was carried out with the same experimental design as the second one but replacing NaCl with Na2SO4. Shoot regeneration was evaluated after 50 d of culturing: 25 in darkness and 25 in white light. In the first experiment, shoot regeneration was very poor and was observed only at the lower salt concentrations. In the second experiment, the percentages of caulogenic leaves were much higher, but decreased with increasing NaCl concentration. The more pronounced negative effect of the highest NaCl concentrations appeared to be partly mitigated by CaCl2 at 1 and 3 mM. The presence of 3 mM CaCl2, in the experiment with Na2SO4, appeared to be even more effective in reducing the adverse effect of sodium stress on caulogenesis. This result was attributed to the lower Cl concentration in the growth medium, which resulted from replacing NaCl with Na2SO4. NaCl applied at low concentrations (5 and 10 mM) in combination with 3 mM CaCl2 exerted a favorable effect on adventitious shoot regeneration. As regards the Na+ and Ca2+ interaction, when the Na+/Ca2+ ratio was below roughly 35 and 20, with NaCl and Na2SO4, respectively, at least 60% of leaves showed regenerating capacity, but optimal values of this ratio were not derived.  相似文献   

18.
Methods are described for obtaining explants which produce adventitious shoots, for subsequent stimulation of rooting and then transplanting using six commercial sugar-beet cultivars. The rate of adventitious shoot regeneration from petioles or intact leaf explants was affected by the source of donor plants, cytokinin type (BAP or Kin) and concentration and cultivar. Increasing the sucrose concentration of the medium from 3% to 5% or 8% had no apparent effect. Adventitious shoots could be produced directly from callus formed on the base of the petioles. In general adventitious shoots were produced on either the concave surface of the petiole or from the callus, occasionally simultaneously on both, and on the convex surface of the petiole in intact leaf explants. The highest rooting rate with 3% sucrose and 1.0 mg l–1 NAA was obtained using half-strength MS medium. There was considerable variation in the propagules from petioles or callus indicating that this system may provide valuable somaclonal variation.Abbreviations BAP benzylaminopurine - IBA indole-3-butyric acid - GA3 gibberellic acid - MS Murashige and Skoog medium - NAA naphthaleneacetic acid Author for correspondence  相似文献   

19.
Summary Cell volume regulation in heart ventricles of the flounderPlatichthys flesus has been studied under hyper-osmotic conditions in vivo and in vitro.During reacclimation of flounders from fresh water to sea water the osmolality of blood plasma increased to the sea water level in 7 days. The water content of the heart ventricle cells remained constant after reacclimation while the intracellular concentration of K+ and taurine increased to values found in sea water flounders.Hearts taken from fresh water flounders were mounted in vitro and perfused with hyper-osmotic ringer solution. Upon perfusion the cellular water content of the ventricle decreased initially but then steadily increased. After 6 h the cellular water content was still below the control values reflecting that the ventricle cells have an incomplete volume regulation in a hyper-osmotic medium. The cellular amount of K+ and taurine increased during the volume regulation. The perfusion media did not contain taurine or amino acids and the gain in cellular taurine must be due to intracellular production.  相似文献   

20.
NaCl-resistant variant cells isolated from sweet potato cell suspensions   总被引:1,自引:0,他引:1  
Salt-resistant cells of sweet potato (Ipomoea batatas L.) were selected by subculturing cell suspensions (11 transfers at 15-day intervals) in MS medium supplemented with 1% NaCl (170.9 mM NaCl).Selected cells showed a brownish pigmentation, and exhibited morphological changes (they were smaller and rounder than non-selected cells). The change in coloration was reversible when the selected cells were subcultured in medium without NaCl. The reduction in size was partially reversed but the change in form was not reversible when selected cells were subcultured 5 times at 15-day intervals in the absence of NaCl.Selected cells exhibited NaCl-tolerance when they were cultured in medium with 1% NaCl and subsequently transferred to NaCl free medium for 3 passages. This finding suggests that the acquired trait is stable for at least 3 passages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号