首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we demonstrated that insulin protects against neuronal oxidative stress by restoring antioxidants and energy metabolism. In this study, we analysed how insulin influences insulin-(IR) and insulin growth factor-1 receptor (IGF-1R) intracellular signaling pathways after oxidative stress caused by ascorbate/Fe2+ in rat cortical neurons. Insulin prevented oxidative stress-induced decrease in tyrosine phosphorylation of IR and IGF-1R and Akt inactivation. Insulin also decreased the active form of glycogen synthase kinase-3beta (GSK-3beta) upon oxidation. Since phosphatidylinositol 3-kinase (PI-3K)/Akt-mediated inhibition of GSK-3beta may stimulate protein synthesis and decrease apoptosis, we analysed mRNA and protein expression of "candidate" proteins involved in antioxidant defense, glucose metabolism and apoptosis. Insulin prevented oxidative stress-induced increase in glutathione peroxidase-1 and decrease in hexokinase-II expression, supporting previous findings of changes in glutathione redox cycle and glycolysis. Moreover, insulin precluded Bcl-2 decrease and caspase-3 increased expression. Concordantly, insulin abolished caspase-3 activity and DNA fragmentation caused by oxidative stress. Thus, insulin-mediated activation of IR/IGF-1R stimulates PI-3K/Akt and inhibits GSK-3beta signaling pathways, modifying neuronal antioxidant defense-, glucose metabolism- and anti-apoptotic-associated protein synthesis. These and previous data implicate insulin as a promising neuroprotective agent against oxidative stress associated with neurodegenerative diseases.  相似文献   

2.
Roles of abscisic acid (ABA) in water stress-induced oxidative stress were investigated in leaves of maize ( Zea mays L.) seedlings exposed to water stress induced by polyethylene glycol (PEG 6000). Treatment with PEG at -0.7 MPa for 12 and 24 h led to a reduction in leaf relative water content (RWC) by 7.8 and 14.1%, respectively. Duration of the osmotic treatments is considered as mild and moderate water stress. The mild water stress caused significant increases in the generation of superoxide radical ( O 2 - ) and hydrogen peroxide (H 2 O 2 ), the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and the contents of ascorbate (ASC), reduced glutathione (GSH). The moderate water stress failed to further enhance the capacity of antioxidant defense systems, as compared to the mild water stress. The contents of catalytic Fe, which is critical for H 2 O 2 -dependent hydroxyl radical ( •OH) production, and the oxidized forms of ascorbate and glutathione pools, dehydroascorbate (DHA) and oxidized glutathione (GSSG), markedly increased, a significant oxidative damage to lipids and proteins took place under the moderate water stress. Pretreatment with ABA caused an obvious reduction in the content of catalytic Fe and significant increases in the activities of antioxidant enzymes and the contents of non-enzymatic antioxidants, and then significantly reduced the contents of DHA and GSSG and the degrees of oxidative damage in leaves exposed to the moderate water stress. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA induced by water stress, reduced the enhancement in the capacity of antioxidant defense systems, and resulted in an increase in catalytic Fe, DHA and GSSG, and oxidative damage in the water-stressed leaves. These effects were completely prevented by addition of ABA, which raised the internal ABA content. Our data indicate that ABA plays an important role in water stress-induced antioxidant defense against oxidative stress.  相似文献   

3.
Roles of abscisic acid (ABA) in water stress-induced oxidative stress were investigated in leaves of maize ( Zea mays L.) seedlings exposed to water stress induced by polyethylene glycol (PEG 6000). Treatment with PEG at &#109 0.7 MPa for 12 and 24 h led to a reduction in leaf relative water content (RWC) by 7.8 and 14.1%, respectively. Duration of the osmotic treatments is considered as mild and moderate water stress. The mild water stress caused significant increases in the generation of superoxide radical ( O 2 &#109 ) and hydrogen peroxide (H 2 O 2 ), the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and the contents of ascorbate (ASC), reduced glutathione (GSH). The moderate water stress failed to further enhance the capacity of antioxidant defense systems, as compared to the mild water stress. The contents of catalytic Fe, which is critical for H 2 O 2 -dependent hydroxyl radical ( &#148 OH) production, and the oxidized forms of ascorbate and glutathione pools, dehydroascorbate (DHA) and oxidized glutathione (GSSG), markedly increased, a significant oxidative damage to lipids and proteins took place under the moderate water stress. Pretreatment with ABA caused an obvious reduction in the content of catalytic Fe and significant increases in the activities of antioxidant enzymes and the contents of non-enzymatic antioxidants, and then significantly reduced the contents of DHA and GSSG and the degrees of oxidative damage in leaves exposed to the moderate water stress. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA induced by water stress, reduced the enhancement in the capacity of antioxidant defense systems, and resulted in an increase in catalytic Fe, DHA and GSSG, and oxidative damage in the water-stressed leaves. These effects were completely prevented by addition of ABA, which raised the internal ABA content. Our data indicate that ABA plays an important role in water stress-induced antioxidant defense against oxidative stress.  相似文献   

4.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

5.
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the H2O2 and lipid peroxidation levels. Exogenous NO pre-treatment of the seedlings had little influence on the non-enzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

6.
Ferrous ascorbate (FeAA: FeSO4+ascorbic acid) has been used in the past by different investigators to induce oxidative stress. The optimum dose of FeAA for inducing oxidative stress by affecting thiols [total thiols (TSH), glutathione reduced (GSH), glutathione oxidized (GSSG), redox ratio (GSH/GSSG)], total lipids and phospholipids has been ascertained in the local crossbred cattle bull spermatozoa. The fractions of spermatozoa suspended in 2.9% sodium citrate were subjected to three doses of FeAA (100 microM:500 microM, 150 microM:750 microM, 200 microM:1000 microM; FeSO4:ascorbic acid), and were assessed for various parameters. On increasing the concentration of FeAA, a gradual decrease in TSH, GSH, GSH/GSSG, lipid and phospholipid levels, but increase in GSSG content were observed. It is concluded that thiol groups play an important role in antioxidation and detoxification of ROS as well as maintaining intracellular redox status. Thiol groups, thus, serve as defense mechanisms of sperm cells to fight against oxidative stress. In addition, all doses of FeAA cause leakage of lipids and phospholipids from the bull sperm membranes.  相似文献   

7.
A decrease in total glutathione, and aberrant mitochondrial bioenergetics have been implicated in the pathogenesis of Parkinson's disease. Our previous work exemplified the importance of glutathione (GSH) in the protection of mesencephalic neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. Additionally, reactive oxygen species (ROS) generation was an early, contributing event in malonate toxicity. Protection by ascorbate was found to correlate with a stimulated increase in protein-glutathione mixed disulfide (Pr-SSG) levels. The present study further examined ascorbate-glutathione interactions during mitochondrial impairment. Depletion of GSH in mesencephalic cells with buthionine sulfoximine potentiated both the malonate-induced toxicity and generation of ROS as monitored by dichlorofluorescein diacetate (DCF) fluorescence. Ascorbate completely ameliorated the increase in DCF fluorescence and toxicity in normal and GSH-depleted cultures, suggesting that protection by ascorbate was due in part to upstream removal of free radicals. Ascorbate stimulated Pr-SSG formation during mitochondrial impairment in normal and GSH-depleted cultures to a similar extent when expressed as a proportion of total GSH incorporated into mixed disulfides. Malonate increased the efflux of GSH and GSSG over time in cultures treated for 4, 6 or 8 h. The addition of ascorbate to malonate-treated cells prevented the efflux of GSH, attenuated the efflux of GSSG and regulated the intracellular GSSG/GSH ratio. Maintenance of GSSG/GSH with ascorbate plus malonate was accompanied by a stimulation of Pr-SSG formation. These findings indicate that ascorbate contributes to the maintenance of GSSG/GSH status during oxidative stress through scavenging of radical species, attenuation of GSH efflux and redistribution of GSSG to the formation of mixed disulfides. It is speculated that these events are linked by glutaredoxin, an enzyme shown to contain both dehydroascorbate reductase as well as glutathione thioltransferase activities.  相似文献   

8.
Free radicals are involved in aging and cyclosporin A-induced toxicity. The age-related changes in the liver oxidative status of glutathione, lipid peroxidation, and the activity of the enzymatic antioxidant defense system, as well as the influence of aging on the susceptibility to the hepatotoxic effects of cyclosporin (CyA) were investigated in rats of different ages (1, 2, 4, and 24 months). The hepatic content of reduced glutathione (GSH) increased with aging, peaked at 4 months, and decreased in senescent rats. By contrast, glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS) concentrations and superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the oldest than in the youngest rats. CyA treatment, besides inducing the well-known cholestatic syndrome, increased liver GSSG and TBARS contents and the GSSG/GSH molar ratio, and altered the nonenzymatic and enzymatic antioxidant defense systems. The CyA-induced cholestasis and hepatic depletion of GSH, and the increases in the GSSG/GSH ratio, and in GSSG and TBARS concentrations were higher in the older than the mature rats. Moreover, superoxide dismutase and catalase activities were found to be significantly decreased only in treated senescent rats. The higher CyA-induced oxidative stress, lipoperoxidation, and decreases in the antioxidant defense systems in the aged animals render them more susceptible to the hepatotoxic effects of cyclosporin.  相似文献   

9.
Rodrigo R  Rivera G  Orellana M  Araya J  Bosco C 《Life sciences》2002,71(24):2881-2895
This study evaluated the antioxidant defense system of the rat kidney following chronic exposure to red wine rich in flavonols. Both ethanol and antioxidant non-alcoholic wine components, mainly polyphenols, could contribute to the antioxidant status of kidney. Adult rats were given separately, water, ethanol (12.5%), red wine or alcohol-free red wine. After ten weeks of treatment, blood samples were obtained to determine plasma antioxidant capacity (FRAP, ferric reducing ability of plasma), uric acid and ethanol levels. Kidney tissues (cortex and papilla) were separated to perform measurements of reduced glutathione (GSH), glutathione disulfide (GSSG), lipid peroxidation (malondialdehyde, MDA) and the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The activity of (Na + K)-ATPase, a membrane-bound enzyme, was also assessed. Red wine in plasma, elevated the FRAP without changing the concentration of uric acid; in kidney, it diminished the MDA production and elevated the GSH/GSSG ratio and the activity of CAT and GSH-Px. The activity of SOD did not change. Despite the finding that renal (Na + K)-ATPase activity was upregulated by ethanol, it was not altered by either red wine or alcohol-free red wine. The effects on the antioxidant enzymes could be attributed to ethanol, but the increase in the FRAP and GSH/GSSG ratio is attributed to the non-alcoholic components of red wine. These data suggest that there is an enhancement of the antioxidant defense potential in kidney and plasma, after chronic red wine consumption. Both ethanol and the non-alcoholic antioxidant constituents of red wine could be responsible for these effects.  相似文献   

10.
The finding that eukaryotic lanthionine synthetase C-like protein 1 (LanCL1) is a glutathione-binding protein prompted us to investigate the potential relationship between LanCL1 and cystathionine β-synthase (CBS). CBS is a trans-sulfuration enzyme critical for the reduced glutathione (GSH) synthesis and GSH-dependent defense against oxidative stress. In this study we found that LanCL1 bound to CBS in mouse cortex and HEK293 cells. Mapping studies revealed that the binding region in LanCL1 spans amino acids 158–169, and that in CBS contains N-terminal and C-terminal regulatory domains. Recombinant His-LanCL1 directly bound endogenous CBS from mouse cortical lysates and inhibited its activity. Overexpression of LanCL1 inhibited CBS activity in HEK293 cells. CBS activity is reported to be regulated by oxidative stress. Here we found that oxidative stress induced by H2O2 or glutamate lowered the GSH/GSSG ratio, dissociated LanCL1 from CBS, and elevated CBS activity in primary rat cortical neurons. Decreasing the GSH/GSSG ratio by adding GSSG to cellular extracts also dissociated LanCL1 from CBS. Either lentiviral knockdown of LanCL1 or specific disruption of the LanCL1-CBS interaction using the peptide Tat-LanCL1153–173 released CBS activity in neurons but occluded CBS activation in response to oxidative stress, indicating the major contribution of the LanCL1-CBS interaction to the regulation of CBS activity. Furthermore, LanCL1 knockdown or Tat-LanCL1153–173 treatment reduced H2O2 or glutamate-induced neuronal damage. This study implies potential therapeutic value in targeting the LanCL1-CBS interaction for neuronal oxidative stress-related diseases.  相似文献   

11.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean ±SEM of 270 ±12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

12.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean &#45 SEM of 270 &#45 12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

13.
The dual role of glutathione as a transducer of S status (A.G. Lappartient and B. Touraine [1996] Plant Physiol 111: 147-157) and as an antioxidant was examined by comparing the effects of S deprivation, glutathione feeding, and H2O2 (oxidative stress) on SO42- uptake and ATP sulfurylase activity in roots of intact canola (Brassica napus L.). ATP sulfurylase activity increased and SO42- uptake rate severely decreased in roots exposed to 10 mM H2O2, whereas both increased in S-starved plants. In split-root experiments, an oxidative stress response was induced in roots remote from H2O2 exposure, as revealed by changes in the reduced glutathione (GSH) level and the GSH/oxidized glutathione (GSSG) ratio, but there was only a small decrease in SO42- uptake rate and no effect on ATP sulfurylase activity. Feeding plants with GSH increased GSH, but did not affect the GSH/GSSG ratio, and both ATP sulfurylase activity and SO42- uptake were inhibited. The responses of the H2O2-scavenging enzymes ascorbate peroxidase and glutathione reductase to S starvation, GSH treatment, and H2O2 treatment were not to glutathione-mediated S demand regulatory process. We conclude that the regulation of ATP sulfurylase activity and SO42- uptake by S demand is related to GSH rather than to the GSH/GSSG ratio, and is distinct from the oxidative stress response.  相似文献   

14.
The protective effect of selenium (Se) on antioxidant defense and methylglyoxal (MG) detoxification systems was investigated in leaves of rapeseed (Brassica napus cv. BINA sharisha 3) seedlings under cadmium (Cd)-induced oxidative stress. Two sets of 11-day-old seedlings were pretreated with both 50 and 100???M Se (Na2SeO4, sodium selenate) for 24?h. Two concentrations of CdCl2 (0.5 and 1.0?mM) were imposed separately or on the Se-pretreated seedlings, which were grown for another 48?h. Cadmium stress at any levels resulted in the substantial increase in malondialdehyde and H2O2 levels. The ascorbate (AsA) content of the seedlings decreased significantly upon exposure to Cd stress. The amount of reduced glutathione (GSH) increased only at 0.5?mM CdCl2, while glutathione disulfide (GSSG) increased at any level of Cd, with concomitant decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) increased significantly with increased concentration of Cd (both at 0.5 and 1.0?mM CdCl2), while the activities of glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at moderate stress (0.5?mM CdCl2) and then decreased at 1.0?mM severe stress (1.0?mM CdCl2). Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon exposure to any levels of Cd. Selenium pretreatment had little effect on the nonenzymatic and enzymatic components of seedlings grown under normal conditions; i.e., they slightly increased the GSH content and the activities of APX, GR, GST, and GPX. On the other hand, Se pretreatment of seedlings under Cd-induced stress showed a synergistic effect; it increased the AsA and GSH contents, the GSH/GSSG ratio, and the activities of APX, MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II which ultimately reduced the MDA and H2O2 levels. However, in most cases, pretreatment with 50???M Se showed better results compared to pretreatment with 100???M Se. The results indicate that the exogenous application of Se at low concentrations increases the tolerance of plants to Cd-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

15.
The occurrence, nature and prevention of ammonia-induced cell death were assayed in cultured primary cortical neurons from newborn rats. Treatment with 1-10 mM ammonium chloride for 24 or 48 h, dose-dependently decreased neuronal survival (MTT assay) and GSH/GSSG ratio in the cultures, whereas total GSH content was significantly reduced only with 10mM ammonia. Treatment with a glutathione synthesis inhibitor, buthionyl sulfoximine (BSO) (10 microM), decreased the GSH content and GSH/GSSG ratio to a degree similar to that of 10 mM ammonia, but it did not decrease cell survival in control cells. This indicates that glutathione depletion per se is not a cause of ammonia-induced neuronal death. However, ammonia-induced decrease of cell viability was attenuated by incubation with glutathione diethyl ester (GEE), which transiently increased the intracellular GSH level in both control and ammonia-treated cells. Neuronal survival in the presence of ammonia was partly improved by the NMDA receptor antagonists MK-801 and APV. Morphological analysis revealed that ammonia treatment causes both apoptotic and non-apoptotic neuronal death, the former not being inhibited by MK-801. Apoptosis was the dominant type of cell death at 10mM ammonia, as concluded both from morphologic examination and the absence of survival improvement in the presence of GABA+nipecotic acid or taurine, model anti-excitotoxic treatments of cortical neurons. The mechanism underlying apoptosis may include inhibition of a survival kinase, Akt, whose activatory phosphorylation at Ser473 is reduced in neurons treated with 10 mM, but not 1 mM ammonia.  相似文献   

16.
Exogenous-applied 24-epibrassinolide (EBR) increased the seedling growth of radish (Raphanus sativus L.) in terms of seedling length, fresh weight and dry weight both in zinc (Zn2+)-stressed and unstressed conditions. Moreover, EBR lowered the Zn2+ uptake and bioaccumulation. Increased oxidation of ascorbate (AsA) and glutathione (GSH) pools to dehydroascorbate and glutathione disulfide respectively was observed in Zn2+-stressed seedlings, a clear indication of oxidative stress. However, exogenous application of EBR to stressed seedlings inhibited the oxidation of ascorbate and glutathione, maintaining redox molecules in reduced form. Under Zn2+ stress, enzymatic activities of ascorbate–glutathione cycle such as ascorbate peroxidase, monodehydroascorbate reductase increased but the dehydroascorbate reductase, glutathione reductase decreased. Zn2+ stress induced the gamma-glutamylcysteine synthetase, and glutathione-s-transferase activities in radish seedlings were further enhanced with EBR application. Zn2+ toxicity decreased the thiol content but, EBR supplementation resulted in restoration of thiol pool. The results of present study clearly demonstrated that external application of EBR modulates the AsA and GSH redox status to combat the oxidative stress of Zn2+ in seedlings via the AsA–GSH cycle and glutathione metabolism as an antioxidant defense system.  相似文献   

17.
Early oxidative stress in the diabetic kidney: effect of DL-alpha-lipoic acid   总被引:10,自引:0,他引:10  
Oxidative stress is implicated in the pathogenesis of diabetic nephropathy. The attempts to identify early markers of diabetes-induced renal oxidative injury resulted in contradictory findings. We characterized early oxidative stress in renal cortex of diabetic rats, and evaluated whether it can be prevented by the potent antioxidant, DL-alpha-lipoic acid. The experiments were performed on control rats and streptozotocin-diabetic rats treated with/without DL-alpha-lipoic acid (100 mg/kg i.p., for 3 weeks from induction of diabetes). Malondialdehyde plus 4-hydroxyalkenal concentration was increased in diabetic rats vs. controls (p <.01) and this increase was partially prevented by DL-alpha-lipoic acid. F(2) isoprostane concentrations (measured by GCMS) expressed per either mg protein or arachidonic acid content were not different in control and diabetic rats but were decreased several-fold with DL-alpha-lipoic acid treatment. Both GSH and ascorbate (AA) levels were decreased and GSSG/GSH and dehydroascorbate/AA ratios increased in diabetic rats vs. controls (p <.01 for all comparisons), and these changes were completely or partially (AA) prevented by DL-alpha-lipoic acid. Superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, and NADH oxidase, but not catalase, were upregulated in diabetic rats vs. controls, and these activities, except glutathione peroxidase, were decreased by DL-alpha-lipoic acid. In conclusion, enhanced oxidative stress is present in rat renal cortex in early diabetes, and is prevented by DL-alpha-lipoic acid.  相似文献   

18.
The present study investigates the regulatory role of exogenous selenium (Se) in the antioxidant defense and methylglyoxal (MG) detoxification systems in rapeseed seedlings exposed to salt stress. Twelve-day-old seedlings, grown in Petri dishes, were supplemented with selenium (25 μM Na2SeO4) and salt (100 and 200 mM NaCl) separately and in combination, and further grown for 48 h. The ascorbate (AsA) content of the seedlings decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) increased with an increase in the level of salt stress, while the GSH/GSSG ratio decreased. In addition, the ascorbate peroxidase (APX) and glutathione S-transferase (GST) activity increased significantly with increased salt concentration (both at 100 and 200 mM NaCl), while glutathione peroxidase (GPX) activity increased only at moderate salt stress (100 mM NaCl). Glutathione reductase (GR) activity remained unchanged at 100 mM NaCl, while it was decreased under severe (200 mM NaCl) salt stress. Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, whereas a sharp decrease of these activities was observed under severe salt stress (200 mM NaCl). Concomitant increases in the levels of H2O2 and lipid peroxidation (MDA) were also measured. Exogenous Se treatment alone had little effect on the non-enzymatic and enzymatic components. However, further investigation revealed that Se treatment had a synergistic effect: in salt-stressed seedlings, it increased the AsA and GSH contents; GSH/GSSG ratio; and the activities of APX, MDHAR, DHAR, GR, GST, GPX, CAT, Gly I, and Gly II. As a result, addition of Se in salt-stressed seedlings led to a reduction in the levels of H2O2 and MDA as compared to salt stress alone. These results suggest that the exogenous application of Se rendered the plants more tolerant to salt stress-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

19.
The purpose of this study was to elucidate whether exogenous spermidine (Spd) protection of tomato (Solanum lycopersicum L.) seedlings under salinity-alkalinity stress is associated with antioxidant enzymes in the chloroplast. The effects of exogenous Spd on antioxidant enzyme activity and antioxidant content in the chloroplast were evaluated in seedlings of salt-sensitive ecotype (Zhongza 9) grown in a 75 mM salinity-alkalinity solution, with or without 0.25 mM Spd foliar spraying. Results showed that salinity-alkalinity stress increased MDA content, superoxide anion O2?- generation rate, superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) activities and ratio of AsA/DHA and reduced contents of ascorbate (AsA), dehydroascorbate (DHA), AsA+DHA, glutathione (GSH), oxidized glutathione (GSSG), GSH+GSSG, dehydroascorbate reductase (DHAR) activity and ratio of GSH/GSSG in chloroplasts. The exogenous Spd application combined with salinity-alkalinity stress decreased the O2?- generation rate and MDA content compared to salinity-alkalinity stress alone. The exogenous Spd also increased AsA-GSH cycle components and increased all antioxidant enzyme activities in most cases. Therefore, exogenous Spd alleviates salinity-alkalinity stress damage using antioxidant enzymes and non-enzymatic systems in chloroplasts.  相似文献   

20.
The aim of this study was to determine the effects of insulin infusion on oxidative stress induced by acute changes in glycemia in non-stressed hereditary hypertriglyceridemic rats (hHTG) and Wistar (control) rats. Rats were treated with glucose and either insulin or normal saline infusion for 3 hours followed by 90 min of hyperglycemic (12 mmol/l) and 90 min of euglycemic (6 mmol/l) clamp. Levels of total glutathione (GSH), oxidized glutathione (GSSG) and total antioxidant capacity (AOC) were determined to assess oxidative stress. In steady states of each clamp, glucose infusion rate (GIR) was calculated for evaluation of insulin sensitivity. GIR (mg.kg(-1).min(-1)) was significantly lower in hHTG in comparison with Wistar rats; 25.46 (23.41 - 28.45) vs. 36.30 (27.49 - 50.42) on glycemia 6 mmol/l and 57.18 (50.78 - 60.63) vs. 68.00 (63.61 - 85.92) on glycemia 12 mmol/l. GSH/GSSG ratios were significantly higher in hHTG rats at basal conditions. Further results showed that, unlike in Wistar rats, insulin infusion significantly increases GSH/GSSG ratios in hHTG rats: 10.02 (9.90 - 11.42) vs. 6.01 (5.83 - 6.43) on glycemia 6 mmol/l and 7.42 (7.15 - 7.89) vs. 6.16 (5.74 - 7.05) on glycemia 12 mmol/l. Insulin infusion thus positively influences GSH/GSSG ratio and that way reduces intracellular oxidative stress in insulin-resistant animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号