首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A T-cell mitogen present in culture supernatants of Mycoplasma arthritidis (MAS) is known to exhibit an absolute dependence on E alpha-bearing accessory cells (AC), which appear to function by binding the mitogen. We therefore compared the specificity and nature of the AC requirements for MAS and antigen-induced production of IL 2 in T hybridoma cell lines originating from a fusion by using hen egg-white lysozyme (HEL)-specific, H-2d-restricted T blasts. A marked specificity was noted in the ability of the hybridoma lines to become activated by Con A, MAS, or HEL antigen. Thus all three lines produced IL 2 in response to Con A without the addition of B lymphoma AC. Two lines responded to MAS, but only in the presence of AC, and only one line responded to HEL antigen in the presence of AC. Using the HEL responsive T hybridoma line, we demonstrated that disrupted AC and AC membranes could present MAS but not HEL. MAS rapidly associated with AC at 4 degrees C, whereas HEL failed to do so. Paraformaldehyde-fixed AC could absorb the mitogen in MAS and present it to T hybridoma cells within several minutes, whereas HEL antigen could only be presented by fixed AC if there was a prolonged period of incubation (greater than 30 min) at 37 degrees C before fixation. The combined data indicate that metabolically active cells are not required for the association of MAS with AC or for presentation of MAS to T hybridomas. In contrast, HEL antigen requires metabolically active cells for both of these processes. Thus, the mitogen in MAS can bind to AC without any processing requirements, and it is likely that the resulting complex of mitogen and Ia molecules can directly activate T hybridoma cells.  相似文献   

2.
Helper (CD4+) T lymphocytes recognize protein Ag as peptides associated to MHC class II molecules. The polymorphism of class II alpha- and beta-chains has a major influence on the nature of the peptides presented to CD4+ T lymphocytes. For instance, T cell responses in H-2k and H-2b mice are directed at different epitopes of the hen egg lysozyme (HEL) molecule. The current studies were undertaken with the aim of defining the role of mixed haplotype I-A (alpha k beta b and alpha b beta k) molecules in T cell responses to HEL in (H-2k x H-2b)F1 mice, as well as the nature of the immunogenic peptides of HEL recognized in the context of I-A alpha k beta b and I-A alpha b beta k. A series of HEL-reactive T cell lines and hybridomas derived from MHC class II heterozygous (C57BL/6 x C3H F1) mice were established. Their responsiveness to HEL and synthetic HEL peptides was analyzed with the use of L cells transfected with either I-A alpha k beta b or I-A alpha b beta k as APC. Out of 28 clonal T cell hybridomas tested, 13 (46%) only responded to HEL presented by I-A alpha k beta b, 11 (40%) by I-A alpha b beta k (and to a minor extent I-A alpha k beta k), only 4 (14%) were primarily restricted by I-Ak, and none by I-Ab. All the I-A alpha k beta b-restricted T cell hybridomas responded to the HEL peptide 46-61 and to its shorter fragment 52-61, even at concentrations as low as 0.3 nM. As this determinant has been previously defined as immunodominant for I-Ak but not for I-Ab mice, these results suggest a role for the I-A alpha k chain in the selection and immunodominance of HEL 52-61 in H-2k mice. The fine specificity of I-A alpha k beta b-restricted T cell hybridomas for a series of different HEL peptides around the sequence 52 to 61 suggests that peptide 52-61 binds to I-A alpha k beta b with higher affinity than to I-A alpha k beta k. The peptides recognized in the context of I-A alpha b beta k and I-A alpha k beta k were not identified.  相似文献   

3.
The mechanism of help for resting B cell growth in MHC-restricted T-B collaboration was investigated using an in vitro polyclonal model for these T cell-B cell interactions. In the presence of rabbit anti-mouse Ig, small, size-selected B cells elicit help from syngeneic Ia-restricted Th2 cell lines specific for F(ab')2 rabbit globulin. Both Ag-presenting and bystander B cells receive signals from stimulated Th cells that lead to B cell proliferation. The results suggest that the direct activation of resting Ag-presenting and bystander B cells by Th2 cells is mediated by a similar effector mechanism. Although proliferative responses by Ag-presenting B cells are of greater magnitude, help for both Ag-presenting and bystander B cell populations is characterized by the lack of a requirement for membrane Ig cross-linking, by identical kinetics, and by the necessity for direct cell contact or close proximity with Th cells. B cell proliferation is not induced by exposure to the sequence of diffusable mediators released from a synchronized Ag-specific T-B interaction. The T cell-dependent proliferation by both B cell populations can be inhibited by excess mitomycin C-treated syngeneic "cold target" B cells, demonstrating a requirement for a short-range T cell-B cell interaction. mAb inhibition experiments fail to identify a role for class II, LFA-1, or CD4 membrane molecules in the delivery of help to bystander B cells. Antibody against H2d bystander class II molecules has no effect on bystander B cell proliferation at concentrations that completely block Ag presentation by H2d B cells to an H2d-restricted Th cell line. Antibodies against the cell adhesion molecule LFA-1 or the Th cell molecule CD4 do inhibit bystander B cell proliferation, but only to the extent that they block T cell activation and the induction of help. The inductive stimulus leading to resting B cell growth results from an early, short-range interaction with Th cells. B cell proliferation is supported by T cell soluble mediators as a consequence of this interaction, which is required for at least 8 hr after T cell recognition of Ag/Ia on the surface of Ag-presenting B cells.  相似文献   

4.
Immune responses to GAT are controlled by H-2-linked Ir genes; soluble GAT stimulates antibody responses in responder mice (H-2b) but not in nonresponder mice (H-2q). In nonresponder mice, soluble GAT stimulates suppressor T cells that preempt function of helper T cells. After immunization with soluble GAT, spleen cells from (responder x nonresponder: H-2b X H-2q)F1 mice develop antibody responses to responder H-2b GAT-M phi but not to nonresponder H-2q GAT-M phi. This failure of immune F1 spleen cells to respond is due to an active suppressor T cell mechanism that is activated by H-2q, but not H-2b, GAT-M phi and involves two regulatory T cell subsets. Suppressor-inducer T cells are immune radiosensitive Lyt-1 +2-, I-A-, I-J+, Qa-1+ cells. Suppressor-effector T cells can be derived from virgin or immune spleens and are radiosensitive Lyt-1-2+, I-A-, I-J+, Qa-1+ cells. This suppressor mechanism can suppress responses of virgin or immune F1 helper T cells and B cells. Helper T cells specific for H-2b GAT-M phi are easily detected in F1 mice after immunization with soluble GAT; helper T cells specific for H-2q GAT-M phi are demonstrated after elimination of the suppressor-inducer and -effector cells. These helper T cells are radioresistant Lyt-1+2-, I-A+, I-J-, Qa-1- cells. These data indicate that the Ir gene defect in responses to GAT is not due to a failure of nonresponder M phi to present GAT and most likely is not due to a defective T cell repertoire, because the relevant helper T cells are primed in F1 mice by soluble GAT and can be demonstrated when suppressor cells are removed. These data are discussed in the context of mechanisms for expression of Ir gene function in responses to GAT, especially the balance between stimulation of helper vs suppressor T cells.  相似文献   

5.
The target cells for H-2b T lymphocytes mediating a negative allogeneic effect in vitro were analyzed by using carrier-specific helper T cell lines of H-2b, H-2d, or F1 origin and hapten-primed T-depleted spleen cells also expressing one or both of these haplotypes. The helper T cell lines were shown to be carrier specific and H-2b or H-2d restricted. Most importantly, the lines derived from H-2b homozygous mice were devoid of alloreactivity against H-2d and vice versa. Titration of naive H-2b T lymphocytes to the indicator cultures resulted in suppression of the secondary anti-DNP response of the indicator cells whenever the B cells expressed H-2d antigens. The lack of suppression observed in mixtures in which only the helper T cell lines expressed H-2d antigens was not reversed by the increased addition of naive H-2bxd cells, indicating that an insufficient amount of H-2d antigens present on the low number of helper T cells used did not account for this finding. Moreover, the polyclonal plaque-forming cell responses of F1 spleen cells to LPS were also suppressed by naive parental T cells. From these findings it is concluded that the suppressor T cells directly recognize and inhibit allogeneic B cells without the involvement of helper T cells. In addition, it was shown that the suppression of secondary anti-hapten responses by naive allogeneic T cells is blocked by monoclonal anti-Lyt-2 antibody added at the onset of culture. Addition late in culture had no effect, pointing to a functional role of the Lyt-2-bearing structure at an early stage of the suppressive events resulting in the negative allogeneic effect.  相似文献   

6.
We previously established monoclonal antibodies (mAb) that are putatively directed to the I region of H-2k but are reactive only with T cells. Because of their specificity to the unique epitopes different from class II antigens, they are designated as anti-Iat reagents. The present study demonstrated that these anti-Iat inhibit the H-2k-restricted helper T (Th) cell function by acting on the very H-2 restriction site of both H-2k and H-2kxb F1 T cells. This was determined by both the cytotoxic treatment and blocking of antigen-primed Th cells. In the F1 Th population, only those restricted to H-2k were eliminated, leaving the H-2b-restricted Th cells uninhibited. The inhibition of the response was not due to the induction of suppressor T cells, but to the elimination of the function of radioresistant Lyt-1+,2- Th cells. Iatk epitopes were also found on an H-2k-restricted but not on H-2b-restricted Th cell clone established from the same H-2kxb F1 animal. None of the anti-Iatk were reactive with class II antigens on B cells. These results indicate that Iat epitopes are not directly encoded by the I region genes, but are associated with the H-2 restriction site of T cells, which see the self class II polymorphism. Thus, Iat epitopes are expressed clonally in high frequency on H-2k-restricted Th cells of F1, being excluded from the H-2b-restricted Th population. The relationship between Iat and T cell receptor molecules is unknown.  相似文献   

7.
We previously demonstrated that in vivo antibody production to HBsAg in the mouse is regulated by at least two immune response (Ir) genes mapping in the I-A (HBs-Ir-1) and I-C (HBs-Ir-2) subregions of the H-2 locus. To confirm that H-2-linked Ir genes regulate the immune response to HBsAg at the T cell level and to determine if the same Ir genes function in T cell activation as in B cell activation, the HBsAg-specific T cell responses of H-2 congenic and intra-H-2 recombinant strains were analyzed. HBsAg-specific T cell proliferation, IL 2 production, and the surface marker phenotype of the proliferating T cells were evaluated. Additionally, T cell-antigen-presenting cell (APC) interactions were examined with respect to genetic restriction and the role of Ia molecules in HBsAg presentation. The HBsAg-specific T cell proliferative responses of H-2 congenic and intra-H-2 recombinant strains generally paralleled in vivo anti-HBs production in terms of the Ir genes involved, the hierarchy of responses status among H-2 haplotypes, antigen specificity, and kinetics. However, the correlation was not absolute in that several strains capable of producing group-specific anti-HBs in vivo did not demonstrate a group-specific T cell proliferative response to HBsAg. The proliferative responses to subtype- and group-specific determinants of HBsAg were mediated by Thy-1+, Lyt-1+2- T cells, and a possible suppressive role for Lyt-1-2+ T cells was observed. In addition to T cell proliferation, HBsAg-specific T cell activation could be measured in terms of IL 2 production, because anti-HBs responder but not nonresponder HBs-Ag-primed T cells quantitatively produced Il 2 in vitro. Finally, the T cell proliferative response to HBsAg was APC dependent and genetically restricted in that responder but not nonresponder parental APC could reconstitute the T cell response of (responder X nonresponder)F1 mice, and Ia molecules encoded in both the I-A and I-E subregion are involved in HBsAg-presenting cell function.  相似文献   

8.
Addition of histoincompatible lymphocytes can influence the course of ongoing immune responses. Such allogeneic effects may either augment or diminish immune responses. We describe here the minimal genetic differences necessary to generate positive allogeneic effects (allohelp) in a humoral immune response. The antibody response to sheep erythrocytes of T cell-depleted mouse spleen cells was reconstituted by addition of syngeneic or allogeneic nylon wool column-passaged spleen T cells. T cells were pretreated with mitomycin C before culture to prevent development of allo-suppression and cytotoxic lymphocytes. Positive allogeneic effects were operationally defined as superior helper effects (to generate greater antibody forming cell responses) with T cells allogeneic rather than syngeneic to the responding B cells. Thus, addition of allogeneic T cells resulted in many more antibody forming cells than did equal numbers of syngeneic T cells, and fewer allogeneic than syngeneic T cells were necessary to generate comparable responses. With congenic, recombinant, and mutant mouse lines, genetic differences in the H-2 complex and those associated with Mls were each sufficient to provide positive allogeneic effects. With intra-H-2 recombinants, differences at either I or D were sufficient. A disparity at H-2K alone, as provided by the H-2 mutant B6.C-H-2ba against the parental line C57BL/6By, also induced helper effects. The significance of these results is discussed.  相似文献   

9.
The role of insulin-specific helper and suppressor T cells in the H-2-linked genetic control of antibody responses to heterologous insulins was examined in vitro. These data demonstrate that pork insulin stimulates both primed helper T cells and dominant suppressor T cells in all nonresponder strains tested. Thus, the nonresponder phenotype is attributed to the activation of specific suppressor T cells rather than to an absence of helper T cell activity. Examination of the antigenic cross-reactivity patterns of pork insulin-primed helper and suppressor T cells in various strains demonstrates that fine specificity of the helper T cells differs from that of the suppressor T cells and that the patterns of antigenic cross-reactivity of these subpopulations are controlled by the H-2 gene complex. Furthermore, in a given strain of mice variants of insulin that stimulate helper T cells that cross-react with mouse insulin also stimulate dominant suppressor T cells that cross-react with mouse insulin. Such variants of insulin are perceived as nonimmunogenic. These observations raise the possibility that nonresponsiveness that is controlled by H-2 linked genes results from the activation of regulatory mechanisms involved in maintaining self-tolerance.  相似文献   

10.
The C57BL/6 (H-2b) mouse is a nonresponder to hen egg-white lysozyme (HEL) injected i.p., owing to a T suppressor cell-inducing determinant at the amino-terminal region. After immunization with a 93-amino acid fragment (a.a. 13-105) of HEL lacking this determinant, all clones from two independently derived C57BL/6 T cell lines were found to be specific for epitopes within a subregion of peptide 74-96. Three specificity patterns for the clones could be defined on the basis of cross-reactivities with only two other species variant lysozymes. Reactivities of all three specificity groups was consistent with the serine to threonine substitution at position 91, although reactivity of one of the groups could be affected by substitutions at position 84. The results confirm at the clonal level that even for distantly related antigens, only limited regions are recognized by T cells. They are consistent with the notion that specific sites on the antigen capable of interaction with Ia molecules lead to dominance of certain regions for T cell reactivity. Moreover, the diversity in specificity among clones suggests that the limiting feature of T cell responsiveness is not a lack of available T cells in the repertoire directed against a single antigenic site.  相似文献   

11.
To test the hypothesis that resting and previously activated B lymphocytes differ in their proliferative and differentiative responses to various Th cell-derived stimuli, we have examined the interactions of purified small (resting) and large (activated) murine B cells with rabbit Ig-specific Th1 and Th2 clones in the presence of the Ag analogue, rabbit anti-mouse Ig antibody. Small numbers of Th2 cells induce strong Ag-dependent proliferation of and Ig secretion by both resting and activated B lymphocytes. In contrast, Th1 clones stimulate lower responses of activated B cells and fail to stimulate small resting B cells. An interaction with Th1 clones does make small B cells responsive to the Th2-derived cytokine, IL-4, indicating that Th1 clones are capable of delivering some but not all the stimuli necessary for the induction of humoral immunity. Finally, in order to compare the responses of small and large B cells to cognate interactions and secreted cytokines, we used an autoreactive I-Ak-specific Th2 line. This line induces proliferation of and Ig secretion by I-Ak expressing but not H-2d resting and activated B cells as a result of cognate interactions. However, when the H-2d B cells are bystanders in the presence of cytokine secretion by this Th2 line, or are directly exposed to Th2-derived cytokines, both small and large B cells are induced to proliferate but only the large B cells secrete antibody. These results indicate that the magnitude and nature of antibody responses depend on three principal factors: the cytokines produced by Th cells, the state of activation of the responding B lymphocytes, and whether the B cells are recipients of cognate help or are bystanders at the site of T cell stimulation. Our findings also confirm the view that cognate T-B interactions are most efficient for initiating B cell responses and may allow B cells to subsequently respond to a variety of T cell-derived cytokines.  相似文献   

12.
The present study investigates the distinctiveness of Class I H-2 alloantigen-reactive Lyt-2+ helper/proliferative T cell subset in the aspect of tolerance induction. Primary mixed lymphocyte reactions (MLR) revealed that Lyt-2+ and L3T4+ T cell subsets from C57BL/6 (B6) mice were exclusively capable of responding to class I H-2 [B6-C-H-2bm1 (bm1)]- and class II H-2 [B6-C-H-2bm12 (bm12)]-alloantigens, respectively. Anti-bm12 MLR was not affected by i.v. injection of bm12 spleen cells into recipient B6 mice. In contrast, a single i.v. administration of bm1 spleen cells into B6 mice resulted in the abrogation of the capacity of recipient B6 spleen and lymph node cells to give anti-bm1 MLR. This suppression was bm1 alloantigen-specific, since lymphoid cells from B6 mice i.v. presensitized with bm1 cells exhibited comparable anti-bm12 primary MLR to that obtained by normal B6 lymphoid cells. Such tolerance was rapidly (24 h after the i.v. injection of bm1 cells) inducible and lasting for at shortest 3 wk. Addition of lymphoid cells from anti-bm1-tolerant B6 mice to cultures of normal B6 lymphoid cells did not suppress the proliferative responses of the latter cells, indicating that the tolerance is not due to the induction of suppressor cells but attributed to the elimination or functional impairment of anti-bm1 proliferative clones. The tolerance was also demonstrated by the failure of tolerant lymphoid cells to produce IL-2. It was, however, found that anti-bm1 CTL responses were generated by tolerant lymphoid cells which were unable to induce the anti-bm1 MLR nor to produce detectable level of IL-2. These results demonstrate that class I H-2 alloantigen-reactive Lyt-2+ Th cell subset exhibits a distinct property which is expressed by neither Lyt-2+ CTL directed to class I H-2 nor L3T4+ Th cells to class II H-2 alloantigens.  相似文献   

13.
Transgenic (Tg) mice expressing a foreign Ag, hen egg lysozyme (HEL), under control of the alphaA-crystallin promoter ("HEL-Tg" mice) develop immunotolerance to HEL attributed to the expression of HEL in their thymus. In this paper we analyzed the immune response in double (Dbl)-Tg mice generated by mating the HEL-Tg mice with Tg mice that express HEL Abs on their B cells ("Ig-Tg" mice). The B cell compartment of the Dbl-Tg mice was unaffected by the HEL presence and was essentially identical to that of the Ig-Tg mice. A partial breakdown of tolerance was seen in the T cell response to HEL of the Dbl-Tg mice, i.e., their lymphocyte proliferative response against HEL was remarkably higher than that of the HEL-Tg mice. T-lymphocytes of both Dbl-Tg and Ig-Tg mice responded to HEL at concentrations drastically lower than those found stimulatory to lymphocytes of the wild-type controls. Cell mixing experiments demonstrated that 1) the lymphocyte response against low concentrations of HEL is due to the exceedingly efficient Ag presenting capacity of the Ab expressing B cells and 2) breakdown of tolerance in Dbl-Tg mice can also be attributed to the APC capacity of B cells, that sensitize in vivo and stimulate in vitro populations of T cells with low affinity toward HEL, assumed to be escapees of thymic deletion. These results thus indicate that T cell tolerance can be partially overcome by the highly potent Ag presenting capacity of Ab expressing B cells.  相似文献   

14.
We report here a role of B cell stimulatory factor 1 (BSF-1) in the induction of antigen-specific proliferation of affinity-purified small B lymphocytes by a thymus-dependent antigen and a carrier-reactive T cell line. By using an ovalbumin-reactive T cell line (designated Hen-1), which does not produce BSF-1 following activation, it was possible to demonstrate that the antigen-specific proliferative response of trinitrophenyl (TNP)-binding B cells to TNP-ovalbumin required exogenous BSF-1 in addition to direct interaction with irradiated Hen-1 T cells. The activation obtained under these conditions was highly efficient, being sensitive to antigen doses as low as 0.001 microgram/ml. The addition of saturating amounts of BSF-1 did not alter the antigen-specificity or the requirements for hapten-carrier linkage or major histocompatibility complex-restricted T-B interaction in this system. The involvement of BSF-1 was confirmed by the ability of 11B11 anti-BSF-1 antibody to specifically suppress the response of TNP-binding B cells to TNP-ovalbumin, BSF-1, and irradiated Hen-1 T cells. Finally, this response was augmented by addition of the monokine interleukin 1. These data indicate that the proliferative response of small B cells to the thymus-dependent antigen and carrier-reactive T cell line used in our experiments can be regulated by the same factors that govern B cell proliferation induced by thymus-independent type 2 antigens or anti-IgM antibodies.  相似文献   

15.
The immune response to chicken egg-white lysozyme (HEL) is actively and specifically regulated by antigen-specific T cell-mediated suppression in mice bearing the H-2b haplotype; the suppression is therefore MHC-linked. In this report, we propose a possible mechanism for MHC-linked suppression of HEL-helper T cells based on expression of I region-encoded cell surface determinants. We determined whether inhibition of anti-HEL antibody responses correlated with expression of serologically detectable I-A-encoded cell surface determinants by antigen-specific helper, suppressor-inducer, or suppressor-effector T cells. It was observed that HEL-suppressor-effector T cells, but not helper or suppressor-inducer T cells, were eliminated after treatment with anti-I-Ab antibody and complement. Furthermore, suppressor-effector T cells co-express Thy-1, Lyt-2, and I-A cell surface antigens. These results raise the possibility that HEL-specific helper T cells become functionally inhibited after recognition of HEL and I-A alloantigen displayed by suppressor-effector T cells. Thus, the interaction between helper and suppressor T cells may be analogous to the mechanism of T cell-B cell interaction.  相似文献   

16.
Transgenic (Tg) mice expressing hen egg lysozyme (HEL) under the control of the alphaA-crystallin promoter exhibit tolerance to HEL by both their T- and B-cell compartments. Here, we show that double-Tg mice, coexpressing HEL with either interleukin-1beta or interferon (IFN)-gamma, demonstrated unresponsiveness to HEL by their T-cell compartment, but most of them developed antibodies against HEL following a challenge with the antigen. The abrogation of humoral tolerance was more pronounced in the HEL/IL-1 double-Tg mice than in the HEL/IFN-gamma mice. Unlike their controls, double-Tg mice exhibited remarkable levels of variability in their antibody levels. The skewed abrogation of tolerance in the double-Tg mice is proposed to be due to the cytokines' capacity to rescue from clonal deletion small numbers of T cells, which provide help to antibody producing B cells. This notion is supported by the finding that adoptive transfer of small numbers of Th1 or Th2 cells into HEL-Tg mice made possible antibody production similar to that seen in the double-Tg mice.  相似文献   

17.
Lupus-prone (MRLxC57BL/6) F(1) mice lacking gammadelta T cells show more severe lupus than their T cell-intact counterparts, suggesting that gammadelta T cells down-modulate murine lupus. To determine the mechanisms for this effect, we assessed the capacity of gammadelta T cell lines derived from spleens of alphabeta T cell-deficient MRL/Mp-Fas(lpr) (MRL/Fas(lpr)) mice to down-regulate anti-dsDNA production generated by CD4(+)alphabeta T helper cell lines and activated B cells from wild-type MRL/Fas(lpr) mice. One line, GD12 (gd TCR(+), CD4(-)CD8(-)), had the capacity to reduce anti-dsDNA production in a contact-dependent manner. GD12 also killed activated MRL/Fas(lpr) (H-2(k)) B cells, with less cytolysis of resting B cells than that generated by in comparison to cytokine-matched gammadelta T cell lines. In addition, GD12 also killed activated B cells derived from C57BL/6-Fas(lpr) (H-2(b)) or beta(2)-microglobulin (beta(2) M)-deficient MRL/Fas(lpr) mice, suggesting cytolysis was neither MHC- nor CD1-restricted. Killing by GD12 was inhibited by anti-TNFalpha and anti-TNF-R1, and partially blocked by anti-gd TCR Fab fragments, but not by anti-FasL, anti-TNF-R2 (p75) or concanamycin A. IL-10 produced by GD12 also partially inhibited alphabeta Th1-dependent but not alphabeta Th2-dependent autoantibody production. These findings prove that we have identtified a gammadelta T cell line that suppresses autoantibody synthesis by alphabeta T-B cell collaboration in vitro.  相似文献   

18.
B10 mice, although genetically nonresponsive to hen egg-white lysozyme (HEL) after i.p. immunization due to suppressor T cells, make a vigorous helper and proliferative T cell response in the draining popliteal lymph nodes (P-LN) soon after footpad immunization with HEL. The fundamental specificity repertoire in B10 P-LN analyzed with cross-reactive lysozymes, was then compared with that found after the delayed appearance of suppression, in the PETLES. In contrast with B10.A mice, whose T cell specificity pattern was unchanged with time, or anatomical site, the onset of HEL-induced suppression in B10 mice led to a marked heteroreactive shift in specificity pattern. This shift did not occur after immunization with REL (ring-necked pheasant lysozyme), which fails to induce suppression.  相似文献   

19.
Immune responses by mice to heterologous insulins are controlled by H-2 linked Ir genes. In studies to determine the mechanisms responsible for nonresponsiveness, we found that although pork insulin failed to stimulate antibody or proliferative responses in H-2b mice, it did prime T cells that can express helper activity in adoptive recipient mice. This helper activity was insulin-specific in both elicitation and expression. In studies presented in this paper, we have extended this analysis to the response patterns of helper T cells stimulated by sheep, horse, and rat insulins in mice bearing different H-2 haplotypes. The results demonstrate that nonresponder forms of insulin, including rat insulin, prime T cells in H-2b and H-2d, but not H-2k, mice. These results suggest that regulation of nonresponsiveness to insulin appears to be through different pathways in mice bearing different H-2 haplotypes.  相似文献   

20.
By using the intra-I region recombinant mouse strain B10.ASR7 (H-2as3), the immune response (Ir) genes for LDH-B and MOPC-173 were genetically and serologically separated, as assayed by T cell proliferation. Previous work demonstrated that H-2s and H-2b strains respond to LDH-B and MOPC-173 whereas H-2a and H-2k strains failed to respond due to haplotype-specific suppression of I-Ak molecule-activated T helper cells by I-Ek molecule-activated T suppressor cells. In the experiments reported here, B10.ASR7 mice, which lack I-Ek expression, mounted a significant T cell proliferative response to LDH-B but not to MOPC-173. Separation of the Ia determinants used in restricting these two antigen responses was further confirmed when pretreatment of B10.S(9R) (A beta sA alpha sE beta sE alpha k) macrophages with A.TL anti-B10.HTT serum (anti-As beta Es beta Js) adsorbed with B10.ASR7 spleen cells blocked the MOPC-173 response but not the LDH-B response. Unadsorbed serum blocked both antigen responses. The B10.ASR7 E beta allele was determined to be s due to the ability of (A.TL X B10.ASR7)F1 hybrids to mount a T cell proliferative response to the terpolymer GLPhe. Monoclonal antibody blocking of the B10.ASR7 T cell proliferative response to LDH-B demonstrated that the Ia.2 and Ia.17, and not the Ia.15 epitopes are spatially related to the Ia epitopes involved in the restriction of the B10.ASR7 LDH-B T cell proliferative response. In addition, B10.ASR7 helper T cells generated in response to LDH-B were suppressed in a haplotype-specific manner by I-Ek molecule-restricted suppressor T cells in that (A.TL X B10.ASR7)F1 hybrids failed to respond to LDH-B. This nonresponsiveness was eliminated by treatment with monoclonal antibodies directed against the I-Ek molecule. These results suggest the possibility that the immune response defect in B10.ASR7 could be related to the site of recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号