首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The finding that morphogens, signalling molecules that specify cell identity, also act as axon guidance molecules has raised the possibility that the mechanisms that establish neural cell fate are also used to assemble neuronal circuits. It remains unresolved, however, how cells differentially transduce the cell fate specification and guidance activities of morphogens. To address this question, we have examined the mechanism by which the Bone morphogenetic proteins (BMPs) guide commissural axons in the developing spinal cord. In contrast to studies that have suggested that morphogens direct axon guidance decisions using non-canonical signal transduction factors, our results indicate that canonical components of the BMP signalling pathway, the type I BMP receptors (BMPRs), are both necessary and sufficient to specify the fate of commissural neurons and guide their axonal projections. However, whereas the induction of cell fate is a shared property of both type I BMPRs, axon guidance is chiefly mediated by only one of the type I BMPRs, BMPRIB. Taken together, these results indicate that the diverse activities of BMP morphogens can be accounted for by the differential use of distinct components of the canonical BMPR complex.  相似文献   

2.
Morphogens, their identification and regulation   总被引:17,自引:0,他引:17  
During the course of development, cells of many tissues differentiate according to the positional information that is set by the concentration gradients of morphogens. Morphogens are signaling molecules that emanate from a restricted region of a tissue and spread away from their source to form a concentration gradient. As the fate of each cell in the field depends on the concentration of the morphogen signal, the gradient prefigures the pattern of development. In this article, we describe how morphogens and their functions have been identified and analyzed, focusing on model systems that have been extensively studied.  相似文献   

3.
Our knowledge about molecular mechanisms underlying axon guidance along the antero-posterior axis in contrast to the dorso-ventral axis of the developing nervous system is very limited. During the past two years in vitro and in vivo studies have indicated that morphogens have a role in longitudinal axon guidance. Morphogens are secreted proteins that act in a concentration-dependent manner on susceptible groups of precursor cells and induce their differentiation to a specific cell fate. Thus, gradients of morphogens are responsible for the appropriate patterning of the nervous system during early phases of neural development. Therefore, it was surprising to find that gradients of two of these morphogens, Wnt4 and Shh, can be re-used for longitudinal axon guidance during later stages of nervous system development.  相似文献   

4.
Plexin receptors play a crucial role in the transduction of axonal guidance events elicited by semaphorin proteins. In Drosophila, Plexin A (PlexA) is a receptor for the transmembrane semaphorin semaphorin-1a (Sema-1a) and is required for motor and central nervous system (CNS) axon guidance in the developing embryonic nervous system. However, it remains unknown how PlexB functions during neural development and which ligands serve to activate this receptor. Here, we show that plexB, like plexA, is robustly expressed in the developing CNS and is required for motor and CNS axon pathfinding. PlexB and PlexA serve both distinct and shared neuronal guidance functions. We observe a physical association between these two plexin receptors in vivo and find that they can utilize common downstream signaling mechanisms. PlexB does not directly bind to the cytosolic semaphorin signaling component MICAL (molecule that interacts with CasL), but requires MICAL for certain axonal guidance functions. Ligand binding and genetic analyses demonstrate that PlexB is a receptor for the secreted semaphorin Sema-2a, suggesting that secreted and transmembrane semaphorins in Drosophila use PlexB and PlexA, respectively, for axon pathfinding during neural development. These results establish roles for PlexB in central and peripheral axon pathfinding, define a functional ligand for PlexB, and implicate common signaling events in plexin-mediated axonal guidance.  相似文献   

5.
The interpretation of morphogen gradients   总被引:10,自引:0,他引:10  
Morphogens act as graded positional cues that control cell fate specification in many developing tissues. This concept, in which a signalling gradient regulates differential gene expression in a concentration-dependent manner, provides a basis for understanding many patterning processes. It also raises several mechanistic issues, such as how responding cells perceive and interpret the concentration-dependent information provided by a morphogen to generate precise patterns of gene expression and cell differentiation in developing tissues. Here, we review recent work on the molecular features of morphogen signalling that facilitate the interpretation of graded signals and attempt to identify some emerging common principles.  相似文献   

6.

Background  

One way in which positional information is established during embryonic development is through the graded distribution of diffusible morphogens. Unfortunately, little is known about how cells interpret different concentrations of morphogen to activate different genes or how thresholds are generated in a morphogen gradient.  相似文献   

7.
A major goal of modern neuroscience research is to understand the cellular and molecular processes that control the formation, function, and remodeling of chemical synapses. In this article, we discuss the numerous studies that implicate molecules initially discovered for their functions in axon guidance as critical regulators of synapse formation and plasticity. Insights from these studies have helped elucidate basic principles of synaptogenesis, dendritic spine formation, and structural and functional synapse plasticity. In addition, they have revealed interesting dual roles for proteins and cellular mechanisms involved in both axon guidance and synaptogenesis. Much like the dual involvement of morphogens in early cell fate induction and axon guidance, many guidance-related molecules continue to play active roles in controlling the location, number, shape, and strength of neuronal synapses during development and throughout the lifetime of the organism. This article summarizes key findings that link axon guidance molecules to specific aspects of synapse formation and plasticity and discusses the emerging relationship between the molecular and cellular mechanisms that control both axon guidance and synaptogenesis.  相似文献   

8.
The growth cones of developing neurons respond to specific guidance cues in their extracellular environment. Recent studies have shown that secreted signaling molecules from protein families that are best known for their roles as morphogens in specifying cell fate can function as axon guidance molecules. These signaling molecules seem to act directly on the growth cone and thus are likely to activate non-canonical signaling pathways that are coupled to the cytoskeleton.  相似文献   

9.
Successful axon pathfinding requires both correct patterning of tissues, which will later harbor axonal tracts, and precise localization of axon guidance cues along these tracts at the time of axon outgrowth. Retinal ganglion cell (RGC) axons grow towards the optic disc in the central retina, where they turn to exit the eye through the optic nerve. Normal patterning of the optic disc and stalk and the expression of guidance cues at this choice point are necessary for the exit of RGC axons out of the eye. Sonic hedgehog (Shh) has been implicated in both patterning of ocular tissue and direct guidance of RGC axons. Here, we examine the precise spatial and temporal requirement for Hedgehog (Hh) signaling for intraretinal axon pathfinding and show that Shh acts to pattern the optic stalk in zebrafish but does not guide RGC axons inside the eye directly. We further reveal an interaction between the Hh and chemokine pathways for axon guidance and show that cxcl12a functions downstream of Shh and depends on Shh for its expression at the optic disc. Together, our results support a model in which Shh acts in RGC axon pathfinding indirectly by regulating axon guidance cues at the optic disc through patterning of the optic stalk.  相似文献   

10.
Osterfield M  Kirschner MW  Flanagan JG 《Cell》2003,113(4):425-428
Recent evidence indicates that gradients of the same extracellular molecules can act as both morphogens, specifying cell differentiation, and guidance cues, directing axon movement. We discuss how cells may use common mechanisms to convert graded information into discrete responses; and how extracellular signals provide coordinate systems that can be linked to highly diverse cellular outputs.  相似文献   

11.
12.
Many lines of evidence suggest that glial cells function as guide post cells for axonal pathfinding. However, due to the difficulty in completely eliminating glial cells during development, their functions in axonal pathfinding have not been critically evaluated. In Drosophila gcm mutant embryos, glial cells were genetically eliminated providing us with a unique opportunity to investigate glial functions in nervous system formation. We showed that even in the absence of glial cells the initial axonal extension of pioneer neurons was essentially normal. However, at later stages, axon bundle formation and pathfinding were disturbed in the absence of glial cells, and abnormal migration of glial cells led to misrouting of axons. This indicates that glial cells are required for correct pathfinding at later stages. We propose that glial cells function in a stage-specific manner; they are not required for the initial extension of pioneers but essential for the subsequent extension of pioneers and followers as well as axon bundle formation.  相似文献   

13.
Few mechanistic ideas from the pre-molecular era of biology have had as enduring an impact as the morphogen concept. In the classical view, cells in developing embryos obtain positional information by measuring morphogen concentrations and comparing them with fixed concentration thresholds; as a result, graded morphogen distributions map into discrete spatial arrangements of gene expression. Recent studies on Hedgehog and other morphogens suggest that establishing patterns of gene expression may be less a function of absolute morphogen concentrations, than of the dynamics of signal transduction, gene expression, and gradient formation. The data point away from any universal model of morphogen interpretation and suggest that organisms use multiple mechanisms for reading out developmental signals in order to accomplish specific patterning goals.  相似文献   

14.
The Caenorhabditis elegans genome contains three rac-like genes, ced-10, mig-2, and rac-2. We report that ced-10, mig-2 and rac-2 act redundantly in axon pathfinding: inactivating one gene had little effect, but inactivating two or more genes perturbed both axon outgrowth and guidance. mig-2 and ced-10 also have redundant functions in some cell migrations. By contrast, ced-10 is uniquely required for cell-corpse phagocytosis, and mig-2 and rac-2 have only subtle roles in this process. Rac activators are also used differentially. The UNC-73 Trio Rac GTP exchange factor affected all Rac pathways in axon pathfinding and cell migration but did not affect cell-corpse phagocytosis. CED-5 DOCK180, which acts with CED-10 Rac in cell-corpse phagocytosis, acted with MIG-2 but not CED-10 in axon pathfinding. Thus, distinct regulatory proteins modulate Rac activation and function in different developmental processes.  相似文献   

15.
Neural map specification by gradients   总被引:1,自引:0,他引:1  
  相似文献   

16.
Neuronal migration and axon guidance constitute fundamental processes in brain development that are generally studied independently. Although both share common mechanisms of cell biology and biochemistry, little is known about their coordinated integration in the formation of neural circuits. Here we show that the development of the thalamocortical projection, one of the most prominent tracts in the mammalian brain, depends on the early tangential migration of a population of neurons derived from the ventral telencephalon. This tangential migration contributes to the establishment of a permissive corridor that is essential for thalamocortical axon pathfinding. Our results also demonstrate that in this process two different products of the Neuregulin-1 gene, CRD-NRG1 and Ig-NRG1, mediate the guidance of thalamocortical axons. These results show that neuronal tangential migration constitutes a novel mechanism to control the timely arrangement of guidance cues required for axonal tract formation in the mammalian brain.  相似文献   

17.
During development, secreted morphogens such as Wnt, Hedgehog (Hh), and BMP emit from their producing cells in a morphogenetic field, and specify different cell fates in a direct concentration-dependent manner. Understanding how morphogens form their concentration gradients to pattern tissues has been a central issue in developmental biology. Various experimental studies from Drosophila have led to several models to explain the formation of morphogen gradients. Over the past decade, one of the main findings in this field is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking. Here, we review these data, highlighting recent findings that reveal mechanistic roles of HSPGs in controlling morphogen gradient formation.Embryonic development involves many spatial and temporal patterns of cell and tissue organization. These patterning processes are controlled by gradients of morphogens, the “form-generating substances” (Tabata and Takei 2004; Lander 2007). Secreted morphogen molecules, including members of Wnt, Hedgehog (Hh), and transforming growth factor-β (TGF-β) families, are generated from organizing centers and form concentration gradients to specify distinct cell fates in a concentration-dependent manner. Understanding how morphogen gradients are established during development has been a central question in developmental biology. Over the past decade, studies in both Drosophila and vertebrates have yielded important insights in this field. One of the important findings is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. In this review, we first discuss various models for morphogen movement. Then, we focus on the functions of HSPGs in morphogen movement, signaling, and trafficking.  相似文献   

18.
During nervous system development, axons that grow out simultaneously in the same extracellular environment are often sorted to different target destinations. As there is only a restricted set of guidance cues known, regulatory mechanisms are likely to play a crucial role in controlling cell migration and axonal pathfinding. Heparan sulfate proteoglycans (HSPGs) carry long chains of differentially modified sugar residues that have been proposed to encode specific information for nervous system development. Here, we show that the cell surface proteoglycan syndecan SDN-1 functions autonomously in neurons to control the neural migration and guidance choices of outgrowing axons. Epistasis analysis suggests that heparan sulfate (HS) attached to SDN-1 can regulate guidance signaling by the Slit/Robo pathway. Furthermore, SDN-1 acts in parallel with other HSPG core proteins whose HS side chains are modified by the C5-epimerase HSE-5, and/or the 2O-sulfotransferase HST-2, depending on the cellular context. Taken together, our experiments show that distinct HS modification patterns on SDN-1 are involved in regulating axon guidance and cell migration in C. elegans.  相似文献   

19.
Early brain patterning depends on proper arrangement of positional information. This information is given by gradients of secreted signaling molecules (morphogens) detected by individual cells within the responding tissue, leading to specific fate decisions. Here we report that the morphogen FGF8 exerts initially a differential signal activity along the E9.5 mouse neural tube. We demonstrate that this polarizing activity codes by RAS-regulated ERK1/2 signaling and depends on the topographical location of the secondary organizers: the isthmic organizer (IsO) and the anterior neural ridge (anr) but not on zona limitans intrathalamica (zli). Our results suggest that Sprouty2, a negative modulator of RAS/ERK pathway, is important for regulating Fgf8 morphogenetic signal activity by controlling Fgf8-induced signaling pathways and positional information during early brain development.  相似文献   

20.
Netrin is an evolutionarily conserved, secretory axon guidance molecule. Netrin's receptors, UNC-5 and UNC-40/DCC, are single trans-membrane proteins with immunoglobulin domains at their extra-cellular regions. Netrin is thought to provide its positional information by establishing a concentration gradient. UNC-5 and UNC-40 act at growth cones, which are specialized axonal tip structures that are generally located at a long distance from the neural cell body. Thus, the proper localization of both Netrin and its receptors is critical for their function. This review addresses the localization mechanisms of UNC-6/Netrin and its receptors in Caenorhabditis elegans, focusing on our recent reports. These findings include novel insights on cytoplasmic proteins that function upstream of the receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号