首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galectin-8 functions as a matricellular modulator of cell adhesion   总被引:10,自引:0,他引:10  
The interaction of cells with the extracellular matrix regulates cell adhesion and motility. Here we demonstrate that different cell types adhere and spread when cultured in serum-free medium on immobilized galectin-8, a mammalian beta-galactoside-binding protein. At maximal doses, galectin-8 is equipotent to fibronectin in promoting cell adhesion and spreading. Cell adhesion to immobilized galectin-8 is mediated by sugar-protein interactions with integrins, and galectin-8 triggers integrin-mediated signaling cascades including Tyr phosphorylation of focal adhesion kinase and paxillin. Cell adhesion is potentiated in the presence of Mn(2+), whereas it is interrupted in the presence of soluble galectin-8, integrin beta(1) inhibitory antibodies, EDTA, or thiodigalactoside but not by RGD peptides. Furthermore, cells readily adhere onto immobilized monoclonal galectin-8 antibodies, which are equipotent to integrin antibodies in promoting cell adhesion. Cell adhesion to immobilized galectin-8 is partially inhibited by serum proteins, suggesting that complex formation between immobilized galectin-8 and serum components generates a matrix that is less supportive of cell adhesion. Accordingly, cell motility on immobilized galectin-8 readily takes place in the presence of serum. Truncation of the C-terminal half of galectin-8, including one of its two carbohydrate recognition domains, largely abolishes its ability to modulate cell adhesion, indicating that both carbohydrate recognition domains are required to maintain a functional form of galectin-8. Collectively, our findings implicate galectin-8 as a physiological modulator of cell adhesion. When immobilized, it functions as a matrix protein equipotent to fibronectin in promoting cell adhesion by ligation and clustering of cell surface integrin receptors. In contrast, when present in excess as a soluble ligand, galectin-8 (like fibronectin) forms a complex with integrins that negatively regulates cell adhesion. Because of its dual effects on the adhesive properties of the cells and its association with fibronectin, galectin-8 might be considered a novel type of matricellular protein.  相似文献   

2.
To isolate cDNAs for molecules involved in cell adhesion to the extracellular matrix, expression cloning with non-adherent colon cancer Colo201 cells was carried out. Four positive clones were isolated and, when sequenced, one was found to be galectin-1, a beta-galactoside-binding protein. When cultured on fibronectin-, laminin-, and collagen-coated and non-coated dishes, the adherent galectin-1 cDNA-transfected Colo201 cells increased and spread somewhat. Immunofluorescence staining revealed that galectin-1 was expressed inside and outside of Colo201 cells. The adhesion was dependent on the carbohydrate-recognition domain of galectin-1 since lactose inhibited the adhesion and exogenously-added galectin-1 caused the adhesion. PD58059, an inhibitor of mitogen-activated protein kinase, or LY294002, a phosphoinositide 3-OH kinase inhibitor, decreased the adhesion. Furthermore, the expression of galectin-1 in Colo201 cells induced apoptotic cell death, while exogenously-added galectin-1 did not cause apoptosis. These results indicate that galectin-1 plays a role in both cell-matrix interactions and the inhibition of Colo201 cell proliferation, and suggest that galectin-1 expressed in cells could be associated with apoptosis.  相似文献   

3.
Galectins are a family of mammalian beta-galactoside-binding proteins that positively and negatively regulate T cell death. Extracellular galectin-1 directly induces death of T cells and thymocytes, while intracellular galectin-3 blocks T cell death. In contrast to the antiapoptotic function of intracellular galectin-3, we demonstrate that extracellular galectin-3 directly induces death of human thymocytes and T cells. However, events in galectin-3- and galectin-1-induced cell death differ in a number of ways. Thymocyte subsets demonstrate different susceptibility to the two galectins: whereas galectin-1 kills double-negative and double-positive human thymocytes with equal efficiency, galectin-3 preferentially kills double-negative thymocytes. Galectin-3 binds to a complement of T cell surface glycoprotein receptors distinct from that recognized by galectin-1. Of these glycoprotein receptors, CD45 and CD71, but not CD29 and CD43, appear to be involved in galectin-3-induced T cell death. In addition, CD7 that is required for galectin-1-induced death is not required for death triggered by galectin-3. Following galectin-3 binding, CD45 remains uniformly distributed on the cell surface, in contrast to the CD45 clustering induced by galectin-1. Thus, extracellular galectin-3 and galectin-1 induce death of T cells through distinct cell surface events. However, as galectin-3 and galectin-1 cell death are neither additive nor synergistic, the two death pathways may converge inside the cell.  相似文献   

4.
5.
Apical sorting by galectin-3-dependent glycoprotein clustering   总被引:1,自引:0,他引:1  
Epithelial cells are characterized by their polarized organization based on an apical membrane that is separated from the basolateral membrane domain by tight junctions. Maintenance of this morphology is guaranteed by highly specific sorting machinery that separates lipids and proteins into different carrier populations for the apical or basolateral cell surface. Lipid-raft-independent apical carrier vesicles harbour the beta-galactoside-binding lectin galectin-3, which interacts directly with apical cargo in a glycan-dependent manner. These glycoproteins are mistargeted to the basolateral membrane in galectin-3-depleted cells, dedicating a central role to this lectin in raft-independent sorting as apical receptor. Here, we demonstrate that high-molecular-weight clusters are exclusively formed in the presence of galectin-3. Their stability is sensitive to increased carbohydrate concentrations, and cluster formation as well as apical sorting are perturbed in glycosylation-deficient Madin-Darby canine kidney (MDCK) II cells. Together, our data suggest that glycoprotein cross-linking by galectin-3 is required for apical sorting of non-raft-associated cargo.  相似文献   

6.
7.
Dendritic cells (DCs) are potent mediators of the immune response, and can be activated by exogenous pathogen components. Galectin-1 is a member of the conserved beta-galactoside-binding lectin family that binds galactoside residues on cell surface glycoconjugates. Galectin-1 is known to play a role in immune regulation via action on multiple immune cells. However, its effects on human DCs are unknown. In this study, we show that galectin-1 induces a phenotypic and functional maturation in human monocyte-derived DCs (MDDCs) similar to but distinct from the activity of the exogenous pathogen stimuli, LPS. Immature human MDDCs exposed to galectin-1 up-regulated cell surface markers characteristic of DC maturation (CD40, CD83, CD86, and HLA-DR), secreted high levels of IL-6 and TNF-alpha, stimulated T cell proliferation, and showed reduced endocytic capacity, similar to LPS-matured MDDCs. However, unlike LPS-matured DCs, galectin-1-treated MDDCs did not produce the Th1-polarizing cytokine IL-12. Microarray analysis revealed that in addition to modulating many of the same DC maturation genes as LPS, galectin-1 also uniquely up-regulated a significant subset of genes related to cell migration through the extracellular matrix (ECM). Indeed, compared with LPS, galectin-1-treated human MDDCs exhibited significantly better chemotactic migration through Matrigel, an in vitro ECM model. Our findings show that galectin-1 is a novel endogenous activator of human MDDCs that up-regulates a significant subset of genes distinct from those regulated by a model exogenous stimulus (LPS). One unique effect of galectin-1 is to increase DC migration through the ECM, suggesting that galectin-1 may be an important component in initiating an immune response.  相似文献   

8.
Galectin-3, a beta-galactoside-binding protein, is implicated in cell growth, adhesion, differentiation, and tumor progression by interactions with its ligands. Recent studies have revealed that galectin-3 suppresses apoptosis and anoikis that contribute to cell survival during metastatic cascades. Previously, it has been shown that human galectin-3 undergoes post-translational signaling modification of Ser(6) phosphorylation that acts as an "on/off" switch for its sugar-binding capability. We questioned whether galectin-3 phosphorylation is required for its anti-apoptotic function. Serine to alanine (S6A) and serine to glutamic acid (S6E) mutations were produced at the casein kinase I phosphorylation site in galectin-3. The cDNAs were transfected into a breast carcinoma cell line BT-549 that innately expresses no galectin-3. Metabolic labeling revealed that only wild type galectin-3 undergoes phosphorylation in vivo. Expression of Ser(6) mutants of galectin-3 failed to protect cells from cisplatin-induced cell death and poly(ADP-ribose) polymerase from degradation when compared with wild type galectin-3. The non-phosphorylated galectin-3 mutants failed to protect cells from anoikis with G(1) arrest when cells were cultured in suspension. In response to a loss of cell-substrate interactions, only cells expressing wild type galectin-3 down-regulated cyclin A expression and up-regulated cyclin D(1) and cyclin-dependent kinase inhibitors, i.e. p21(WAF1/CIP1) and p27(KIP1) expression levels. These results demonstrate that galectin-3 phosphorylation regulates its anti-apoptotic signaling activity.  相似文献   

9.
The galectin family of lectins regulates multiple biologic functions, such as development, inflammation, immunity, and cancer. One common function of several galectins is the ability to trigger T cell death. However, differences among the death pathways triggered by various galectins with regard to glycoprotein receptors, intracellular death pathways, and target cell specificity are not well understood. Specifically, galectin-9 and galectin-1 both kill thymocytes, peripheral T cells, and T cell lines; however, we have found that galectin-9 and galectin-1 require different glycan ligands and glycoprotein receptors to trigger T cell death. The two galectins also utilize different intracellular death pathways, as galectin-9, but not galectin-1, T cell death was blocked by intracellular Bcl-2, whereas galectin-1, but not galectin-9, T cell death was blocked by intracellular galectin-3. Target cell susceptibility also differed between the two galectins, as galectin-9 and galectin-1 killed different subsets of murine thymocytes. To define structural features responsible for distinct activities of the tandem repeat galectin-9 and dimeric galectin-1, we created a series of bivalent constructs with galectin-9 and galectin-1 carbohydrate recognition domains connected by different peptide linkers. We found that the N-terminal carbohydrate recognition domain and linker peptide contributed to the potency of these constructs. However, we found that the C-terminal carbohydrate recognition domain was the primary determinant of receptor recognition, death pathway signaling, and target cell susceptibility. Thus, carbohydrate recognition domain specificity, presentation, and valency make distinct contributions to the specific effects of different galectins in initiating T cell death.  相似文献   

10.
Evidence for a role for galectin-1 in pre-mRNA splicing.   总被引:11,自引:0,他引:11       下载免费PDF全文
Galectins are a family of beta-galactoside-binding proteins that contain characteristic amino acid sequences in the carbohydrate recognition domain (CRD) of the polypeptide. The polypeptide of galectin-1 contains a single domain, the CRD. The polypeptide of galectin-3 has two domains, a carboxyl-terminal CRD fused onto a proline- and glycine-rich amino-terminal domain. In previous studies, we showed that galectin-3 is a required factor in the splicing of nuclear pre-mRNA, assayed in a cell-free system. We now document that (i) nuclear extracts derived from HeLa cells contain both galectins-1 and -3; (ii) depletion of both galectins from the nuclear extract either by lactose affinity adsorption or by double-antibody adsorption results in a concomitant loss of splicing activity; (iii) depletion of either galectin-1 or galectin-3 by specific antibody adsorption fails to remove all of the splicing activity, and the residual splicing activity is still saccharide inhibitable; (iv) either galectin-1 or galectin-3 alone is sufficient to reconstitute, at least partially, the splicing activity of nuclear extracts depleted of both galectins; and (v) although the carbohydrate recognition domain of galectin-3 (or galectin-1) is sufficient to restore splicing activity to a galectin-depleted nuclear extract, the concentration required for reconstitution is greater than that of the full-length galectin-3 polypeptide. Consistent with these functional results, double-immunofluorescence analyses show that within the nucleus, galectin-3 colocalizes with the speckled structures observed with splicing factor SC35. Similar results are also obtained with galectin-1, although in this case, there are areas of galectin-1 devoid of SC35 and vice versa. Thus, nuclear galectins exhibit functional redundancy in their splicing activity and partition, at least partially, in the nucleoplasm with another known splicing factor.  相似文献   

11.
The mechanism of apoptosis induced by human galectin-1, a mammalian beta-galactoside-binding protein with a remarkable cytotoxic effect on activated peripheral T cells and tumor T cell lines has been extensively investigated in this study. Here we first show that galectin-1 initiate the acid sphingomyelinase mediated release of ceramide and this event is critical in the further steps. Elevation of ceramide level coincides with exposure of phosphatidylserine on the outer cell membrane. The downstream events, decrease of Bcl-2 protein amount, depolarization of the mitochondria and activation of the caspase 9 and caspase 3 depend on production of ceramide. All downstream steps, including production of ceramide, require the generation of membrane rafts and the presence of two tyrosine kinases, p56(lck) and ZAP70. Based on our findings we suggest a model of the mechanism of galectin-1 triggered cell death.  相似文献   

12.
Cell cycle regulation by galectin-12, a new member of the galectin superfamily   总被引:13,自引:0,他引:13  
Galectins are a family of beta-galactoside-binding animal lectins with conserved carbohydrate recognition domains (CRDs). Here we report the identification and characterization of a new galectin, galectin-12, which contains two domains that are homologous to the galectin CRD. The N-terminal domain contains all of the sequence elements predicted to form the two beta-sheets found in other galectins, as well as conserved carbohydrate-interacting residues. The C-terminal domain shows considerable divergence from the consensus sequence, and many of these conserved residues are not present. Nevertheless, the protein has lactose binding activity, most likely due to the contribution of the N-terminal domain. The mRNA for galectin-12 contains features coding for proteins with growth-regulatory functions. These include start codons in a context that are suboptimal for translation initiation and AU-rich motifs in the 3'-untranslated region, which are known to confer instability to mRNA. Galectin-12 mRNA is sparingly expressed or undetectable in many tissues and cell lines tested, but it is up-regulated in cells synchronized at the G(1) phase or the G(1)/S boundary of the cell cycle. Ectopic expression of galectin-12 in cancer cells causes cell cycle arrest at the G(1) phase and cell growth suppression. We conclude that galectin-12 is a novel regulator of cellular homeostasis.  相似文献   

13.
Galectin-3, a structurally unique beta-galactoside-binding lectin, through the specific protein?Cprotein and protein?Ccarbohydrate interactions participates in numerous biological processes, such as cell proliferation and apoptosis, adhesion and activation. Its expression and secretion by until now an unknown mechanism are modulated by diverse molecules and are dependent on different physiological and pathophysiological conditions. By autocrine and paracrine actions, galectin-3 modulates many immune reactions and affects various immune cells, particularly those of monocyte?Cmacrophage lineage. This is why galectin-3 has recently become an attractive therapeutic target. However, molecular mechanisms of its actions as well as regulatory mechanism of its expression and activation are still largely unknown. In this study, we show that lipopolysaccharide (LPS) provokes upregulation of galectin-3 expression on both gene and protein level in monocyte-like THP-1 cells, which can be inhibited by dexamethasone, but not with non-steroidal anti-inflammatory drugs aspirin and indomethacin. Resting and LPS-challenged monocyte-like THP-1 cells do not have detectable amount of surface-bound galectin-3, but are able to bind exogenously added galectin-3 with the same capacity. Although galectin-3 is generally considered to be a pro-inflammatory molecule, here we show that the exogenously added galectin-3 does not affect interleukin (IL)-1??, IL-6, IL-8, IL-10, IL-12p70 and TNF-?? production in resting and LPS-activated monocyte-like THP-1 cells nor influences its own gene expression level in those cells.  相似文献   

14.
Galectin-1, a beta-galactoside-binding dimeric lectin, is involved in adhesion, migration, and proliferation of vascular smooth muscle cells (SMC), the key steps in the development of atherosclerosis and restenosis. Here we investigated the molecular basis of the interactions between galectin-1 and SMCs. Galectin-1 modulated SMC attachment in a dose- and beta-galactoside-dependent manner. Direct binding of galectin-1 to beta1 integrin was detected by the immune precipitation of beta1 integrin after chemical cross-linking of 125I-labelled galectin-1 to the cell surface proteins. Galectin-1 transiently increased availability of beta1 integrins on the cell surface to antibodies against beta1 integrin. Incubation of SMCs with galectin-1 transiently increased the amount of the active form of beta1 integrin and tyrosine phosphorylation of two cytoskeleton-associated proteins; one of them coincided with focal adhesion kinase (FAK). Galectin-1 is likely to affect SMC adhesion by interacting with beta1 integrin on the cell surface of SMCs and inducing outside-in signalling.  相似文献   

15.
The galectins are a family of beta-galactoside-binding animal lectins with a conserved carbohydrate recognition domain (CRD). They have a high affinity for small beta-galactosides, but binding specificity for complex glycoconjugates varies considerably within the family. The ligand recognition is essential for their proper function, and the structures of several galectins have suggested their mechanism of carbohydrate binding. Galectin-9 has two tandem CRDs with a short linker, and we report the crystal structures of mouse galectin-9 N-terminal CRD (NCRD) in the absence and the presence of four ligand complexes. All structures form the same dimer, which is quite different from the canonical 2-fold symmetric dimer seen for galectin-1 and -2. The beta-galactoside recognition mechanism in the galectin-9 NCRD is highly conserved among other galectins. In the apo form structure, water molecules mimic the ligand hydrogen-bond network. The galectin-9 NCRD can bind both N-acetyllactosamine (Galbeta1-4GlcNAc) and T-antigen (Galbeta1-3GalNAc) with the proper location of Arg-64. Moreover, the structure of the N-acetyllactosamine dimer (Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc) complex shows a unique binding mode of galectin-9. Finally, surface plasmon resonance assay showed that the galectin-9 NCRD forms a homophilic dimer not only in the crystal but also in solution.  相似文献   

16.
The establishment of HIV type 1 (HIV-1) infection is initiated by the stable attachment of the virion to the target cell surface. Although this process relies primarily upon interaction between virus-encoded gp120 and cell surface CD4, a number of distinct interactions influence binding of HIV-1 to host cells. In this study, we report that galectin-1, a dimeric beta-galactoside-binding protein, promotes infection with R5, X4, and R5X4 variants. Galectin-1 acts as a soluble adhesion molecule by facilitating attachment of HIV-1 to the cell surface. This postulate is based on experiments where galectin-1 rendered HIV-1 particles more refractory to various agents that block HIV-1 adsorption and coreceptor binding (i.e., a blocking anti-CD4, soluble CD4, human anti-HIV-1 polyclonal Abs; stromal cell-derived factor-1alpha; RANTES). Experiments performed with the fusion inhibitor T-20 confirmed that galectin-1 is primarily affecting HIV-1 attachment. The relevance of the present findings for the pathogenesis of HIV-1 infection is provided by the fact that galectin-1 is abundantly expressed in the thymus and lymph nodes, organs that represent major reservoirs for HIV-1. Moreover, galectin-1 is secreted by activated CD8(+) T lymphocytes, which are found in high numbers in HIV-1-positive patients. Therefore, it is proposed that galectin-1, which is released in an exocrine fashion at HIV-1 replication sites, can cross-link HIV-1 and target cells and promote a firmer adhesion of the virus to the cell surface, thereby augmenting the efficiency of the infection process. Overall, our findings suggest that galectin-1 might affect the pathogenesis of HIV-1 infection.  相似文献   

17.
Galectin-3 and metastasis   总被引:17,自引:0,他引:17  
Galectin-3, a 31 kDa member of the beta-galactoside-binding proteins, is an intracellular and extracellular lectin which interacts with intracellular glycoproteins, cell surface molecules and extracellular matrix proteins. Galectin-3 is expressed widely in epithelial and immune cells and its expression is correlated with cancer aggressiveness and metastasis. Galectin-3 is involved in various biological phenomena including cell growth, adhesion, differentiation, angiogenesis and apoptosis. Recent research revealed that galectin-3 is associated with several steps of invasion and metastasis, like angiogenesis, cell-matrix interaction, dissemination through blood flow and extravasation. Recently, we and others have shown that galectin-3 can be a reliable diagnostic marker in certain cancers and one of the target proteins of cancer treatment. In this review, we describe the involvement of galectin-3 in each steps of metastasis and clinical significance of galectin-3.  相似文献   

18.
Human galectin-3 is a novel chemoattractant for monocytes and macrophages   总被引:24,自引:0,他引:24  
Galectin-3 is a beta-galactoside-binding protein implicated in diverse biological processes. We found that galectin-3 induced human monocyte migration in vitro in a dose-dependent manner, and it was chemotactic at high concentrations (1.0 microM) but chemokinetic at low concentrations (10-100 nM). Galectin-3-induced monocyte migration was inhibited by its specific mAb and was blocked by lactose and a C-terminal domain fragment of the protein, indicating that both the N-terminal and C-terminal domains of galectin-3 are involved in this activity. Pertussis toxin (PTX) almost completely blocked monocyte migration induced by high concentrations of galectin-3. Galectin-3 caused a Ca2+ influx in monocytes at high, but not low, concentrations, and both lactose and PTX inhibited this response. There was no cross-desensitization between galectin-3 and any of the monocyte-reactive chemokines examined, including monocyte chemotactic protein-1, macrophage inflammatory protein-1alpha, and stromal cell-derived factor-1alpha. Cultured human macrophages and alveolar macrophages also migrated toward galectin-3, but not monocyte chemotactic protein-1. Finally, galectin-3 was found to cause monocyte accumulation in vivo in mouse air pouches. These results indicate that galectin-3 is a novel chemoattractant for monocytes and macrophages and suggest that the effect is mediated at least in part through a PTX-sensitive (G protein-coupled) pathway.  相似文献   

19.
20.
Recent evidence has implicated galectins and their carbohydrate ligands as master regulators of the inflammatory response. Galectin-1, a member of this family, has shown specific anti-inflammatory and immunoregulatory effects. To gain insight into the potential mechanisms involved in these effects, we investigated the effects of galectin-1 in L-arginine metabolism of peritoneal rat macrophages. Pretreatment of macrophages with galectin-1 resulted in a dose- and time-dependent inhibition of lipopolysaccharide-induced nitric oxide (NO) production, accompanied by a decrease in inducible nitric oxide synthase (iNOS) expression (the classic pathway of L-arginine). On the other hand, galectin-1 favored the balance toward activation of L-arginase, the alternative metabolic pathway of L-arginine. Inhibition of NO production was not the result of increased macrophage apoptosis because addition of this beta-galactoside-binding protein to macrophages under the same experimental conditions did not affect the apoptotic threshold of these cells. To understand how endogenous galectin-1 is regulated in macrophages under inflammatory stress, we finally explored the ultrastructural distribution, expression, and secretion of galectin-1 in resident, inflammatory, and activated macrophages. This study provides an alternative cellular mechanism based on the modulation of L-arginine metabolism to understand the molecular basis of the anti-inflammatory properties displayed by this carbohydrate-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号