首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the precise nonsteady-state characteristics of ventilation (VE), O2 uptake (VO2), and CO2 output (VCO2) during moderate-intensity exercise, six subjects each underwent eight repetitions of 100-W constant-load cycling. The tests were preceded either by rest or unloaded cycling ("0" W). An early component of VE, VO2, and VCO2 responses, which was obscured on any single test by the breath-to-breath fluctuations, became apparent when the several repetitions were averaged. These early responses were abrupt when the work was instituted from rest but were much slower and smaller from the 0-W base line and corresponded to the phase of cardiodynamic gas exchange. Some 20 s after the onset of the work a further monoexponential increase to steady state occurred in all three variables, the time constants of which did not differ between the two types of test. Consequently, the exponential behavior of VE, VO2, and VCO2 in response to moderate exercise is best described by a model that incorporates only the second phase of the response.  相似文献   

2.
Our purpose was to study the possible role of a pulmonary chemoreceptor in the control of ventilation during exercise. Respiratory gas exchange was measured breath-by-breath at two intensities of exercise with circulatory occlusion of the legs. Eight male subjects exercised on a cycle ergometer at 49 and 98 W for 12 min; circulation to the legs was occluded by thigh cuffs (26.7 kPa) for two min after six min of unoccluded exercise. PETCO2 and VO2 decreased and PETO2 increased significantly during occlusion at both workloads. Occlusion elicited marked hyperventilation, as evidenced by sharp increases in VE, VE/VCO2, and VE/VO2. A sudden sharp increase in PETCO2 was seen 12.3 +/- 0.5 and 6.5 +/- 1.2s after cuff release in all subjects during exercise at 49 and 98 W, respectively. At 49 W a post-occlusion inflection in VE was seen in 7 subjects 21.1 +/- 5.8s after the PETCO2 inflection. Three subjects showed an inflection in VE at 98 W 23.3 +/- 7.5 s after the PETCO2 inflection. There were significant increases in PETCO2, VO2, VCO2 and VE after cuff release. VE mirrored VCO2 better than VO2, post occlusion. On the basis of a significant lag time between inflections in PETCO2 and VE following cuff release, it is concluded that the influences of a pulmonary CO2 receptor were not seen.  相似文献   

3.
This study examined the effects of aerobic conditioning during the second and third trimesters of human pregnancy on ventilatory responses to graded cycling. Previously sedentary pregnant women were assigned randomly to an exercise group (n = 14) or a nonexercising control group (n = 14). Data were collected at 15-17 weeks, 25-27 weeks and 34-36 weeks of pregnancy. Testing involved 20 W.min-1 increases in work rate to a heart rate of 170 beats.min-1 and (or) volitional fatigue. Breath-by-breath ventilatory and alveolar gas exchange measurements were compared at rest, a standard submaximal .VO2 and peak exercise. Within both groups, resting .V(E), .V(A), and V(T)/T(I) increased significantly with advancing gestation. Peak work rate, O2 pulse (.VO2/HR), .V(E), .V(A) respiratory rate, V(T)/T(I), .VO2, .VCO2, and the ventilatory threshold (T(vent)) were increased after physical conditioning. Chronic maternal exercise has no significant effect on pregnancy-induced changes in ventilation and (or) alveolar gas exchange at rest or during standard submaximal exercise. Training-induced increases in T(vent) and peak oxygen pulse support the efficacy of prenatal fitness programs to improve maternal work capacity.  相似文献   

4.
The tolerable work duration (t) for high-intensity cycling is well described as a hyperbolic function of power (W): W = (W'.t-1) + Wa, where Wa is the upper limit for sustainable power (lying between maximum W and the threshold for sustained blood [lactate] increase, theta lac), and W' is a constant which defines the amount of work which can be performed greater than Wa. As training increases the tolerable duration of high-intensity cycling, we explored whether this reflected an alteration of Wa, W' or both. Before and after a 7-week regimen of intense interval cycle-training by healthy males, we estimated ( ) theta lac and determined maximum O2 uptake (mu VO2); Wa; W'; and the temporal profiles of pulmonary gas exchange, blood gas, acid-base and metabolic response to constant-load cycling at and above Wa. Although training increased theta lac (24%), mu VO2 (15%) and Wa (15%), W' was unaffected. For exercise at Wa, a steady state was attained for VO2, [lactate] and pH both pre- and post-training, despite blood [norepinephrine] and [epinephrine] ([NE], [E]) and rectal temperature continuing to rise. For exercise greater than Wa, there was a progressive increase in VO2 (resulting in mu VO2 at fatigue), [lactate], [NE], [E] and rectal temperature, and a progressive decrease for pH. We conclude that the increased endurance capacity for high-intensity exercise following training reflects an increased W asymptote of the W-t relationship with no effect on its curvature; consequently, there is no appreciable change in the amount of work which can be performed above Wa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The purposes of this investigation were to quantify the noise component of child breath-by-breath data, investigate the major determinants of the breath-to-breath noise, and to characterise the noise statistically. Twenty-four healthy children (12 males and 12 females) of mean (SD) age 13.1 (0.3) years completed 25 min of steady-state cycle ergometry at an exercise intensity of 50 W. Ventilatory and gas exchange variables were computed breath-by-breath. The mean (SD) oxygen consumption (VO2) ranged from 0.72 (0.16) to 0.92 (0.26) l x min(-1); mean (SD) carbon dioxide production (VCO2) ranged from 0.67 (0.20) l x min(-1) to 0.85 (0.16) l x min(-1); and mean (SD) minute ventilation ranged from 17.81 (3.54) l x min(-1) to 24.97 (5.63) l x min(-1). The majority of the breath-to-breath noise distributions differed significantly from Gaussian distributions with equivalent mean and SD parameters. The values of the normalised autocorrelation functions indicated a negligible breath-to-breath correlation. Tidal volume accounted for the majority of the VO2 (43%) and VCO2 (49%) variance. The breath-to-breath noise can be explained in terms of variations in the breathing pattern, although the large noise magnitude, together with the relatively small attainable response amplitudes in children reduces the certainty with which ventilatory and gas exchange kinetics can be measured.  相似文献   

6.
The exercising Thoroughbred horse (TB) is capable of exceptional cardiopulmonary performance. However, because the ventilatory equivalent for O2 (VE/VO2) does not increase above the gas exchange threshold (Tge), hypercapnia and hypoxemia accompany intense exercise in the TB compared with humans, in whom VE/VO2 increases during supra-Tge work, which both removes the CO2 produced by the HCO buffering of lactic acid and prevents arterial partial pressure of CO2 (PaCO2) from rising. We used breath-by-breath techniques to analyze the relationship between CO2 output (VCO2) and VO2 [V-slope lactate threshold (LT) estimation] during an incremental test to fatigue (7 to approximately 15 m/s; 1 m x s(-1) x min(-1)) in six TB. Peak blood lactate increased to 29.2 +/- 1.9 mM/l. However, as neither VE/VO2 nor VE/VCO2 increased, PaCO2 increased to 56.6 +/- 2.3 Torr at peak VO2 (VO2 max). Despite the presence of a relative hypoventilation (i.e., no increase in VE/VO2 or VE/VCO2), a distinct Tge was evidenced at 62.6 +/- 2.7% VO2 max. Tge occurred at a significantly higher (P < 0.05) percentage of VO2 max than the lactate (45.1 +/- 5.0%) or pH (47.4 +/- 6.6%) but not the bicarbonate (65.3 +/- 6.6%) threshold. In addition, PaCO2 was elevated significantly only at a workload > Tge. Thus, in marked contrast to healthy humans, pronounced V-slope (increase VCO2/VO2) behavior occurs in TB concomitant with elevated PaCO2 and without evidence of a ventilatory threshold.  相似文献   

7.
The purpose of this study was to examine the interactions of adaptations in O2 transport and utilization under conditions of altered arterial O2 content (CaO2), during rest to exercise transitions. Simultaneous measures of alveolar (VO2alv) and leg (VO2mus) oxygen uptake and leg blood flow (LBF) responses were obtained in normoxic (FiO2 (inspired fraction of O2) = 0.21), hypoxic (FiO2 = 0.14), and hyperoxic (FiO2 = 0.70) gas breathing conditions. Six healthy subjects performed transitions in leg kicking exercise from rest to 48 +/- 3 W. LBF was measured continuously with pulsed and echo Doppler ultrasound methods, VO2alv was measured breath-by-breath at the mouth and VO2mus was determined from LBF and radial artery and femoral vein blood samples. Even though hypoxia reduced CaO2 to 175.9 +/- 5.0 from 193.2 +/- 5.0 mL/L in normoxia, and hyperoxia increased CaO2 to 205.5 +/- 4.1 mL/L, there were no differences in the absolute values of VO2alv or VO2mus across gas conditions at any of the rest or exercise time points. A reduction in leg O2 delivery in hypoxia at the onset of exercise was compensated by a nonsignificant increase in O2 extraction and later by small increases in LBF to maintain VO2mus. The dynamic response of VO2alv was slower in the hypoxic condition; however, hyperoxia did not affect the responses of oxygen delivery or uptake at the onset of moderate intensity leg kicking exercise. The finding of similar VO2mus responses at the onset of exercise for all gas conditions demonstrated that physiological adaptations in LBF and O2 extraction were possible, to counter significant alterations in CaO2. These results show the importance of the interplay between O2 supply and O2 utilization mechanisms in meeting the challenge provided by small alterations in O2 content at the onset of this submaximal exercise task.  相似文献   

8.
The purpose of this study was to investigate the characteristics of a newly developed turbine flowmeter (Alpha Technologies, model VMM-2) for use in an exercise testing system by comparing its measurement of expiratory flow (VE), O2 uptake (VO2), and CO2 output (VCO2) with the Fleisch pneumotachometer. An IBM PC/AT-based breath-by-breath system was developed, with turbine flowmeter and dual-Fleisch pneumotachometers connected in series. A normal subject was tested twice at rest, 100-W, and 175-W of exercise. Expired gas of 24-32 breaths was collected in a Douglas bag. VE was within 4% accuracy for both flowmeter systems. The Fleisch pneumotachometer system had 5% accuracy for VO2 and VCO2 at rest and exercise. The turbine flowmeter system had up to 20% error for VO2 and VCO2 at rest. Errors decreased as work load increased. Visual observations of the flow curves revealed the turbine signal always lagged the Fleisch signal at the beginning of inspiration or expiration. At the end of inspiration or expiration, the turbine signal continued after the Fleisch signal had returned to zero. The "lag-before-start" and "spin-after-stop" effects of the turbine flowmeter resulted in larger than acceptable error for the VO2 and VCO2 measurements at low flow rates.  相似文献   

9.
Exercise performed above the lactate threshold (OLa) produces a slowly-developing phase of oxygen uptake (VO2) kinetics which elevates VO2 above that predicted from the sub-OLa VO2-work rate relationship. This phenomenon has only been demonstrated, to date, in subjects who were relatively homogeneous with respect to fitness. This investigation therefore examined whether this behaviour occurred at a given absolute VO2 or whether it was a characteristic of supra-OLa exercise in a group of subjects with over a threefold range of OLa (990-3000 ml O2.min-1) and peak VO2 (1600-5260 ml O2.min-1). Twelve healthy subjects performed: 1) exhausting incremental cycle ergometer exercise for estimation of OLa (OLa) and peak VO2, and 11) a series of constant-load tests above and below OLa for determination of the VO2 profile and efficiency of work. During all tests expired ventilation, VO2 and carbon dioxide production were monitored breath-by-breath. The efficiency of work determined during incremental exercise (28.1 +/- 0.7%, means +/- SE, n = 12) did not differ from that determined during sub-OLa constant-load exercise (27.4 +/- 0.5%, p greater than 0.05). For constant-load exercise, VO2 rose above that predicted, from the sub-OLa VO2-work rate relationship, for all supra-OLa work rates. This was evident above 990 ml O2.min-1 in the least fit subject but only above 3000 ml O2.min-1 in the fittest subject. As a consequence the efficiency of work was reduced from 27.4 +/- 0.5% for sub-OLa exercise to 22.6 +/- 0.4% (p less than 0.05) at the lowest supra-OLa work rate (i.e. OLa + 20 W, on average).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The influence of chronic obstructive pulmonary disease (COPD) on exercise ventilatory and gas exchange kinetics was assessed in nine patients with stable airway obstruction (forced expired volume at 1 s = 1.1 +/- 0.33 liters) and compared with that in six normal men. Minute ventilation (VE), CO2 output (VCO2), and O2 uptake (VO2) were determined breath-by-breath at rest and after the onset of constant-load subanaerobic threshold exercise. The initial increase in VE, VCO2, and VO2 from rest (phase I), the subsequent slow exponential rise (phase II), and the steady-state (phase III) responses were analyzed. The COPD group had a significantly smaller phase I increase in VE (3.4 +/- 0.89 vs. 6.8 +/- 1.05 liters/min), VCO2 (0.10 +/- 0.03 vs. 0.22 +/- 0.03 liters/min), VO2 (0.10 +/- 0.03 vs. 0.24 +/- 0.04 liters/min), heart rate (HR) (6 +/- 0.9 vs. 16 +/- 1.4 beats/min), and O2 pulse (0.93 +/- 0.21 vs. 2.2 +/- 0.45 ml/beat) than the controls. Phase I increase in VE was significantly correlated with phase I increase in VO2 (r = 0.88) and HR (r = 0.78) in the COPD group. Most patients also had markedly slower phase II kinetics, i.e., longer time constants (tau) for VE (87 +/- 7 vs. 65 +/- 2 s), VCO2 (79 +/- 6 vs. 63 +/- 3 s), and VO2 (56 +/- 5 vs. 39 +/- 2 s) and longer half times for HR (68 +/- 9 vs. 32 +/- 2 s) and O2 pulse (42 +/- 3 vs. 31 +/- 2 s) compared with controls. However, tau VO2/tau VE and tau VCO2/tau VE were similar in both groups. The significant correlations of the phase I VE increase with HR and VO2 are consistent with the concept that the immediate exercise hyperpnea has a cardiodynamic basis. The slow ventilatory kinetics during phase II in the COPD group appeared to be more closely related to a slowed cardiovascular response rather than to any index of respiratory function. O2 breathing did not affect the phase I increase in VE but did slow phase II kinetics in most subjects. This confirms that the role attributed to the carotid bodies in ventilatory control during exercise in normal subjects also operates in patients with COPD.  相似文献   

11.
A monitor was developed to track weightlessness deconditioning aboard the National Aeronautics and Space Administration (NASA) Space Station by measuring the O2 uptake (VO2) and CO2 production (VCO2) and calculating maximum VO2 and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic flow calibration, and it uses breath-by-breath compensation for sample line transport delay. The accuracy of the system was measured over the range of VO2 and VCO2 from 100 to 800 ml/min by means of simulation. Accuracy was 0.54% for VO2 and 2.9% for VCO2. The system was further evaluated using two laboratory methods, the first method being comparison with a breath-by-breath system. As volunteers performed a maximum effort on a cycle ergometer, the mean difference in readings between the two systems was 17 ml/min for VO2 and 8.0 ml/min for VCO2. The correlation coefficient squared was greater than 0.96 for both. The second laboratory test was to use the system for 2 mo in a Human Performance Laboratory. Readings of maximum VO2 (VO2max) and anaerobic threshold were repeatable and consistent with the individual's activity level. The accuracy and convenience of operation will make this a valuable instrument aboard the Space Station.  相似文献   

12.
Slow upward drift of VO2 during constant-load cycling in untrained subjects   总被引:2,自引:0,他引:2  
The oxygen uptake kinetics during constant-load exercise when sitting on a bicycle ergometer were determined in 7 untrained subjects by measuring breath-by-breath VO2 during continuous exercise to volitional exhaustion (mean endurance time = 1160 +/- 172 s) at a pedal frequency of 70 revolutions.min-1. The power output, averaging 189.5 W, was set at 82.5% of that eliciting the individual VO2max during a 5 min incremental exercise test. Throughout the exercise period, the VO2 kinetics could be appropriately described by a two-component exponential equation of the form: VO2(t) = Ya[1 - exp(-kat)] + Yb[1 - exp(-kbt)] where VO2 is net oxygen consumption and t the time from work onset. VO2 measured at the end of exercise was close to VO2max (98% VO2max) and the mean values of Ya, ka, Yb and kb amounted to 1195 ml O2.min-1, 0.034 s-1, 1562 ml O2.min-1, and 0.005 s-1 respectively. The initial rate of increase in VO2 predicted from the above equation is slower than that calculated, for the same work intensity, on the basis of the data obtained by Morton (1985) in trained subjects. For t greater than 480 s, however, the two models yield substantially equal results.  相似文献   

13.
A method is described for breath-by-breath measurement of alveolar gas exchange corrected for changes of lung gas stores. In practice, the subject inspires from a spirometer, and each expired tidal volume is collected into a rubber bag placed inside a rigid box connected to the same spirometer. During the inspiration following any given expiration the bag is emptied by a vacuum pump. A computer monitors inspiratory and expiratory tidal volumes, drives four solenoid valves allowing appropriate operation of the system, and memorizes end-tidal gas fractions as well as mixed expired gas composition analyzed by mass spectrometer. Thus all variables for calculating alveolar gas exchange, based on the theory developed by Auchincloss et al. (J. Appl. Physiol. 21: 810-818, 1966), are obtained on a single-breath basis. Mean resting and steady-state exercise gas exchange data are equal to those obtained by conventional open-circuit measurements. Breathing rates up to 30 X min-1 can be followed. The breath-to-breath variability of O2 uptake at the alveolar level is less (25-35%) than that measured at the mouth as the difference between the inspired and expired volumes, both at rest and during exercise up to 0.7 of maximum O2 consumption.  相似文献   

14.
Influence of work rate on ventilatory and gas exchange kinetics   总被引:4,自引:0,他引:4  
A linear system has the property that the kinetics of response do not depend on the stimulus amplitude. We sought to determine whether the responses of O2 uptake (VO2), CO2 output (VCO2), and ventilation (VE) in the transition between loadless pedaling and higher work rates are linear in this respect. Four healthy subjects performed a total of 158 cycle ergometer tests in which 10 min of exercise followed unloaded pedaling. Each subject performed three to nine tests at each of seven work rates, spaced evenly below the maximum the subject could sustain. VO2, VCO2, and VE were measured breath by breath, and studies at the same work rate were time aligned and averaged. Computerized nonlinear regression techniques were used to fit a single exponential and two more complex expressions to each response time course. End-exercise blood lactate was determined at each work rate. Both VE and VO2 kinetics were markedly slower at work rates associated with sustained blood lactate elevations. A tendency was also detected for VO2 (but not VE) kinetics to be slower as work rate increased for exercise intensities not associated with lactic acidosis (P less than 0.01). VO2 kinetics at high work rates were well characterized by the addition of a slower exponential component to the faster component, which was seen at lower work rates. In contrast, VCO2 kinetics did not slow at the higher exercise intensities; this may be the result of the coincident influence of several sources of CO2 related to lactic acidosis. These findings provide guidance for interpretation of ventilatory and gas exchange kinetics.  相似文献   

15.
The time-course of heart rate, blood lactate, and ventilatory gas exchange was studied during an incremental exercise test on cycloergometer in order to ascertain whether heart rate deflection occurred at the same load as the second lactate S[La]2) and ventilatory (SV2) thresholds. Twelve moderately trained subjects, 22 to 30 years old, participated in the study. The initial power setting was 30 W for 3 min with successive increases of 30 W every min except at the end of the test where the increase was reduced to 20 and 10 W.min-1. Ventilatory flow (VE), oxygen uptake (VO2), carbon dioxide production (VCO2, ventilatory equivalents of O2 (EO2 = VE/VO2) and CO2 (ECO2 = VE/VCO2), and heart rate (HR) were determined during the last 20 s of every min. Venous blood samples were drawn at the end of each stage of effort and analyzed enzymatically for lactate concentration ([La]). The HR deflection, S[La]2, and SV2 were represented graphically by two investigators using a double blind procedure. Following the method proposed by Conconi et al. 1982, the deflection in HR was considered to begin at the point beyond which the increase in work intensity exceeded the increase in HR and the linearity of the work rate/HR relationship was lost. S[La]2 corresponded to the second breaking point of the lactate time-course curve (onset of blood lactate accumulation) and SV2 was identified at the second breaking point in the increase in VE and ventilatory equivalent for O2 uptake accompanied by a concomitant increase in ventilatory equivalent for CO2 output. We observed that the deflection point in HR was present only in 7 subjects. The work load, VO2, HR, and [La] levels at which heart rate departed from linearity did not differ significantly from those determined with S[La]2 ans SV2. The VO2 and HR values at HR deflection point were significantly correlated with those measured at S[La]2 and SV2. It is concluded that deflection in heart rate does not always occur, and when it does, it coincides with the second lactate and ventilatory gas exchange thresholds. It can thus be used for the determination of optimal intensity for individualized aerobic training.  相似文献   

16.
The purpose of this study was to determine the effect of work rate increment on peak oxygen uptake (VO2 peak) during wheelchair ergometry (WCE) in men with quadriplegia due to cervical spinal cord injuries (CSCI). Twenty-two non-ambulatory subjects (aged 20-38 years) with CSCI were divided into two groups based on wheelchair sports classification (n = 12 for IA group and n = 10 for IB/IC group). Subjects underwent three different, continuous graded exercise tests (spaced at least 1 week apart) on an electronically braked wheelchair ergometer. Following a 3-min warmup, the work rate was increased 2, 4, or 6 W.min-1 for the IA group and 4, 6, or 8 W.min-1 for the IB/IC group. Ventilation and gas exchange were measured breath-by-breath with a computerized system. Repeated-measures ANOVA showed no significant difference among the three protocols for VO2 peak in the IA group (P greater than 0.05). The mean (SD) VO2 peak values (ml.kg-1.min-1) were 9.3 (2.4), 9.4 (3.2), and 8.4 (2.6) for the 2, 4, and 6 W.min-1 protocols, respectively. In contrast, the IB/IC group showed a significant difference among the protocols for VO2 peak (P less than 0.05). The mean (SD) VO2 peak values (ml.kg-1,min-1) were 15.1 (4.0), 14.1 (4.4), and 12.7 (4.0) for the 4, 6, and 8 W.min-1 protocols, respectively. Post hoc analysis revealed a difference between the 4 and 8 W.min-1 protocols. Our results suggest that graded exercise testing of men with quadriplegia due to CSCI, using WCE, should employ work rate increments between 2 and 6 W.min-1 and that work rate increments of 8 W.min-1 or greater will result in an underestimate of VO2 peak.  相似文献   

17.
Previous studies have reported respiratory, cardiac and muscle changes at rest in triathletes 24 h after completion of the event. To examine the effects of these changes on metabolic and cardioventilatory variables during exercise, eight male triathletes of mean age 21.1 (SD 2.5) years (range 17-26 years) performed an incremental cycle exercise test (IET) before (pre) and the day after (post) an official classic triathlon (1.5-km swimming, 40-km cycling and 10-km running). The IET was performed using an electromagnetic cycle ergometer. Ventilatory data were collected every minute using a breath-by-breath automated system and included minute ventilation (V(E)), oxygen uptake (VO2), carbon dioxide production (VCO2), respiratory exchange ratio, ventilatory equivalent for oxygen (V(E)/VO2) and for carbon dioxide (V(E)/VCO2), breathing frequency and tidal volume. Heart rate (HR) was monitored using an electrocardiogram. The oxygen pulse was calculated as VO2/HR. Arterialized blood was collected every 2 min throughout IET and the recovery period, and lactate concentration was measured using an enzymatic method. Maximal oxygen uptake (VO2max) was determined using conventional criteria. Ventilatory threshold (VT) was determined using the V-slope method formulated earlier. Cardioventilatory variables were studied during the test, at the point when the subject felt exhausted and during recovery. Results indicated no significant differences (P > 0.05) in VO2max [62.6 (SD 5.9) vs 64.6 (SD 4.8) ml x kg(-1) x min(-1)], VT [2368 (SD 258) vs 2477 (SD 352) ml x min(-1)] and time courses of VO2 between the pre- versus post-triathlon sessions. In contrast, the time courses of HR and blood lactate concentration reached significantly higher values (P < 0.05) in the pre-triathlon session. We concluded that these triathletes when tested 24 h after a classic triathlon displayed their pre-event aerobic exercise capacity, bud did not recover pretriathlon time courses in HR or blood lactate concentration.  相似文献   

18.
Six subjects pedaled a stationary cycle ergometer to exhaustion on three separate occasions while breathing gas mixtures of 17, 21, or 60% O2 in N2. Each subject rode for 3 min at work rates of 60, 90, 105 W, followed by 15-W increases every 3 min until exhaustion. Inspired and expired gas fractions, ventilation (V), heart rate, and blood lactate were measured. O2 uptake (VO2) and CO2 output (VCO2) were calculated for the last minute of each work rate; blood samples were drawn during the last 5 s. "Break points" for lactate, V, VCO2, V/VO2, and expired oxygen fraction (FEO2) were mathematically determined. VO2 was not significantly different at any work rate among the three different conditions. Nor did maximal VO2 differ significantly among the three treatments (P greater than 0.05). Lactate concentrations were significantly lower during hyperoxia and significantly higher during hypoxia compared with normoxia. Lactate values at exhaustion were not significantly different among the three treatments. Four subjects were able to work for a longer period of time during hyperoxic breathing. The variations in lactate accumulation as reported in this study cannot be explained on the basis of differences in VO2. The results of this research lend support to the hypothesis that differences in the performance of subjects breathing altered fractions of inspired oxygen may be caused by differences in lactate (or H+) accumulation.  相似文献   

19.
To study the effects of previous submaximal exercise on the ventilatory determination of the Aerobic Threshold (AeT), 16 men were subjected to three maximal exercise tests (standard test = ST, retest = RT, and test with previous exercise = TPE ) on a cycle ergometer. The protocol for the three tests consisted of 3 min pedalling against 25 W, followed by increments of 25 W every minute until volitional fatigue. TPE was preceded by 10 min cycling at a power output corresponding to the AeT as determined in ST, followed by a recovery period pedalling against 25 W until VO2 returned to values consistent with the initial VO2 response to 25 W. AeT was determined from the gas exchange curves (ventilatory equivalent for O2, fraction of expired O2, excess of VCO2, ventilation, and respiratory gas exchange ratio) printed every 30 s. The results showed good ST X RT reliability (r = 0.89). TPE showed significantly higher AeT values (2.548 +/- 0.44 1 X min-1) when compared with ST (2.049 +/- 0.331 X min-1) and RT (2.083 +/- 0.30 1 X min-1). There were no significant differences for the sub-threshold respiratory gas exchange ratios among the trials. The sub-threshold VO2 response showed significantly higher values for TPE at power outputs above 50 W. It was concluded that the performance of previous exercise can increase the value for the ventilatory determination of the AeT due to a faster sub-threshold VO2 response.  相似文献   

20.
We evaluated a new exercise-testing system (Beckman Horizon MMC), incorporating a microprocessor that controls the acquisition of data, corrects for time delays, applies calibration factors, ensures quality control, and presents results in a variety of formats. Precision of measurements of ventilation (VE) and mixed expired gas concentrations was high. In steady-state exercise (n = 100) VO2 was measured with a precision (+/- SD) of 66 ml/min (4.3%), (r = 0.991); there was a small (4.62%) systematic underestimation of VCO2, but precision was comparable with VO2, with SD being 67 ml/min (4.55%) (r = 0.993). Good agreement was obtained between measurements made in progressive incremental exercise in healthy subjects with correlation coefficients of 0.997 for VE, 0.995 for VO2, and 0.994 for VCO2. Agreement in patients with cardiorespiratory disorders (n = 10) was similar, except in three patients in whom a variable pattern of breathing limited strict comparisons. Comparison with a breath-by-breath analysis system (n = 5) showed that rapid changes in VE, VCO2, and VO2 were followed accurately; the half time for a change in VO2 was not systematically different between the two systems (SD, 3.34 s, r = 0.951). The incorporation of microprocessor-controlled calibration procedures, which are simple to carry out frequently, was judged to be an important feature of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号