首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EEA1 is an early endosomal Rab5 effector protein that has been implicated in the docking of incoming endocytic vesicles before fusion with early endosomes. Because of the presence of complex endosomal pathways in polarized and nonpolarized cells, we have examined the distribution of EEA1 in diverse cell types. Ultrastructural analysis demonstrates that EEA1 is present on a subdomain of the early sorting endosome but not on clathrin-coated vesicles, consistent with a role in providing directionality to early endosomal fusion. Furthermore, EEA1 is associated with filamentous material that extends from the cytoplasmic surface of the endosomal domain, which is also consistent with a tethering/docking role for EEA1. In polarized cells (Madin-Darby canine kidney cells and hippocampal neurons), EEA1 is present on a subset of "basolateral-type" endosomal compartments, suggesting that EEA1 regulates specific endocytic pathways. In both epithelial cells and fibroblastic cells, EEA1 and a transfected apical endosomal marker, endotubin, label distinct endosomal populations. Hence, there are at least two distinct sets of early endosomes in polarized and nonpolarized mammalian cells. EEA1 could provide specificity and directionality to fusion events occurring in a subset of these endosomes in polarized and nonpolarized cells.  相似文献   

2.
Cargo transfer from trans-Golgi network (TGN)-derived transport carriers to endosomes involves a still undefined set of tethering/fusion events. Here we analyze a molecular interaction that may play a role in this process. We demonstrate that the GGAs, a family of Arf-dependent clathrin adaptors involved in selection of TGN cargo, interact with the Rabaptin-5-Rabex-5 complex, a Rab4/Rab5 effector regulating endosome fusion. These interactions are bipartite: GGA-GAE domains recognize an FGPLV sequence (residues 439-443) in a predicted random coil of Rabaptin-5 (a sequence also recognized by the gamma1- and gamma2-adaptin ears), while GGA-GAT domains bind to the C-terminal coiled-coils of Rabaptin-5. The GGA-Rabaptin-5 interaction decreases binding of clathrin to the GGA-hinge domain, and expression of green fluorescent protein (GFP)-Rabaptin-5 shifts the localization of endogenous GGA1 and associated cargo to enlarged early endosomes. These observations thus identify a binding sequence for GAE/gamma-adaptin ear domains and reveal a functional link between proteins regulating TGN cargo export and endosomal tethering/fusion events.  相似文献   

3.
Early endosome antigen 1 (EEA1) is a 170-kDa polypeptide required for endosome fusion in mammalian cells. The COOH terminus of EEA1 contains a FYVE domain that interacts specifically with phosphatidylinositol 3-phosphate (PtdIns-3-P) and a Rab5 GTPase binding region adjacent to the FYVE domain. The dual interaction of EEA1 with both PtdIns-3-P and Rab5 has been hypothesized to provide the specificity required to target EEA1 to early endosomes. To test this hypothesis, we generated truncated (amino acids 1277--1411) and full-length EEA1 constructs containing point mutations in the COOH terminus that impair Rab5 but not PtdIns-3-P binding. These constructs localized to endosomes in intact cells as efficiently as their wild-type counterparts. Furthermore, overexpression of the truncated constructs, both wild-type and mutated, impaired the function of endogenous EEA1 resulting in the accumulation of small, untethered endosomes. These results suggest that association with Rab5 is not necessary for the initial binding and tethering functions of EEA1. A role for Rab5 binding was revealed, however, upon comparison of endosomes in cells expressing full-length wild-type or mutated EEA1. The mutant full-length EEA1 caused the accumulation of endosome clusters and suppressed the enlargement of endosomes caused by a persistently active form of Rab5 (Rab5Q79L). In contrast, expression of wild-type EEA1 with Rab5Q79L enhanced this enlargement. Thus, endosome tethering depends on the interaction of EEA1 with PtdIns-3-P, and its interaction with Rab5 appears to regulate subsequent fusion.  相似文献   

4.
Phosphatidylinositol 3‐phosphate (PtdIns3P) orchestrates endosomal cargo transport, fusion and motility by recruiting FYVE or PX domain‐containing effector proteins to endosomal membranes. In an attempt to discover novel PtdIns3P effectors involved in the termination of growth factor receptor signalling, we performed an siRNA screen for epidermal growth factor (EGF) degradation, targeting FYVE and PX domain proteins in the human proteome. This screen identified several potential regulators of EGF degradation, including HRS (used as positive control), PX kinase, MTMR4 and Phafin2/PLEKHF2. As Phafin2 has not previously been shown to be required for EGF receptor (EGFR) degradation, we performed further functional studies on this protein. Loss of Phafin2 was found to decrease early endosome size, whereas overexpression of Phafin2 resulted in enlarged endosomes. Moreover, both the EGFR and the fluid‐phase marker dextran were retained in abnormally small endosomes in Phafin2‐depleted cells. In yeast two‐hybrid analysis we identified Phafin2 as a novel interactor of the endosomal‐tethering protein EEA1, and Phafin2 colocalized strongly with EEA1 in microdomains of the endosome membrane. Our results suggest that Phafin2 controls receptor trafficking and fluid‐phase transport through early endosomes by facilitating endosome fusion in concert with EEA1.  相似文献   

5.
The molecular mechanisms ensuring directionality of endocytic membrane trafficking between transport vesicles and target organelles still remain poorly characterized. We have been investigating the function of the small GTPase Rab5 in early endocytic transport. In vitro studies have demonstrated a role of Rab5 in two membrane fusion events: the heterotypic fusion between plasma membrane-derived clathrin-coated vesicles (CCVs) and early endosomes and in the homotypic fusion between early endosomes. Several Rab5 effectors are required in homotypic endosome fusion, including EEA1, which mediates endosome membrane docking, as well as Rabaptin-5 x Rabex-5 complex and phosphatidylinositol 3-kinase hVPS34. In this study we have examined the localization and function of Rab5 and its effectors in heterotypic fusion in vitro. We report that the presence of active Rab5 is necessary on both CCVs and early endosomes for a heterotypic fusion event to occur. This process requires EEA1 in addition to the Rabaptin-5 complex. However, whereas Rab5 and Rabaptin-5 are symmetrically distributed between CCVs and early endosomes, EEA1 is recruited selectively onto the membrane of early endosomes. Our results suggest that EEA1 is a tethering molecule that provides directionality to vesicular transport from the plasma membrane to the early endosomes.  相似文献   

6.
Early endosomes are organized in a network of vesicles shaped by cycles of fusion, fission, and conversion to late endosomes. In yeast, endosome fusion and conversion are regulated, among others, by CORVET, a hexameric protein complex. In the mammalian endocytic system, distinct subpopulations of early endosomes labelled by the Rab5 effectors APPL1 and EEA1 are present. Here, the function of mammalian CORVET with respect to these endosomal subpopulations was investigated. Tgfbrap1 as CORVET‐specific subunit and functional ortholog of Vps3p was identified, demonstrating that it is differentially distributed between APPL1 and EEA1 endosomes. Surprisingly, depletion of CORVET‐specific subunits caused fragmentation of APPL1‐positive endosomes but not EEA1 endosomes in vivo. These and in vitro data suggest that CORVET plays a role in endosome fusion independently of EEA1. Depletion of CORVET subunits caused accumulation of large EEA1 endosomes indicative of another role in the conversion of EEA1 endosomes into late endosomes. In addition, depletion of CORVET‐specific subunits caused alterations in transport depending on both the type of cargo and the specific endosomal subpopulation. These results demonstrate that CORVET plays distinct roles at multiple stages in the mammalian endocytic pathway.   相似文献   

7.
Homotypic fusion between early endosomes can be reconstituted in vitro. By using wortmannin and LY294002, inhibitors of phosphatidylinositol (Pl) 3-kinase, a requirement for this activity has been established in order for fusion to proceed efficiently. It has been shown that Pl 3-kinase activity is required downstream of rab5 activation, although a large excess of activated rab5 can overcome wortmannin inhibition. A series of experiments have also been performed which indicate a role for early endosomal autoantigen 1 (EEA1) in determining fusion efficiency. EEA1 dissociates from membranes following wortmannin treatment. It is proposed that the requirement of endosome fusion for Pl 3-kinase activity is to promote the association of EEA1 with endosomes.  相似文献   

8.
The fusion of transport vesicles with their cognate target membranes, an essential event in intracellular membrane trafficking, is regulated by SNARE proteins and Rab GTPases. Rab GTPases are thought to act prior to SNAREs in vesicle docking, but the exact biochemical relationship between the two classes of molecules is not known. We recently identified the early endosomal autoantigen EEA1 as an effector of Rab5 in endocytic membrane fusion. Here we demonstrate that EEA1 interacts directly and specifically with syntaxin-6, a SNARE implicated in trans-Golgi network to early endosome trafficking. The binding site for syntaxin-6 overlaps with that of Rab5-GTP at the C terminus of EEA1. Syntaxin-6 and EEA1 were found to colocalize extensively on early endosomes, although syntaxin-6 is present in the trans-Golgi network as well. Our results indicate that SNAREs can interact directly with Rab effectors, and suggest that EEA1 may participate in trans-Golgi network to endosome as well as in endocytic membrane traffic.  相似文献   

9.
Role of Rab5 in the recruitment of hVps34/p150 to the early endosome   总被引:7,自引:3,他引:4  
PI 3-kinases are important regulators of endocytic trafficking. We have previously proposed a model in which the Rab5 GTPase recruits EEA1 to the early endosome both directly, by binding to EEA1, and indirectly, through the recruitment of the p150/hVps34 PI 3-kinase and the production of PI[3]P in the endosomal membrane. In this study we have examined this model in vivo . We find that both endogenous hVps34 and p150 are targeted to enlarged endosomal structures in cells expressing constitutively activated Rab5, where they are significantly colocalized with EEA1. Recombinant fragments of p150 disrupt the endosomal localization of EEA1, showing that p150 is required for EEA1 targeting. We further analyzed the mechanism of GTP-dependent Rab5-p150 binding, and showed the p150 HEAT and WD40 domains are required for binding, whereas deletion of the protein kinase domain increases binding to Rab5. Overexpression of constitutively active Rab5 caused a redistribution of epitope-tagged hVps34 and p150 to Rab5-positive endosomes. However, subcellular fractionation showed that this was not due to a significant recruitment of hVps34 or p150 from the cytosolic to the particulate fraction. These data suggest that the binding of Rab5 to the HEAT/WD40 domains of p150 is important in regulating the localization of hVps34/p150. However, Rab5 does not appear to act by directly recruiting p150/hVps34 complexes from the cytosol to the endosomal membrane.  相似文献   

10.
Ca2+ is an essential requirement in membrane fusion, acting through binding proteins such as calmodulin (CaM). Ca2+/CaM is required for early endosome fusion in vitro, however, the molecular basis for this requirement is unknown. An additional requirement for endosome fusion is the protein Early Endosome Antigen 1 (EEA1), and its recruitment to the endosome depends on phosphatidylinositol 3-phosphate [PI(3)P] and the Rab5 GTPase. Herein, we demonstrate that inhibition of Ca2+/CaM, by using either chemical inhibitors or specific antibodies directed to CaM, results in a profound inhibition of EEA1 binding to endosomal membranes both in live cells and in vitro. The concentration of Ca2+/CaM inhibitors required for a full dissociation of EEA1 from endosomal membranes had no effect on the activity of phosphatidylinositol 3-kinases or on endogenous levels of PI(3)P. However, the interaction of EEA1 with liposomes containing PI(3)P was decreased by Ca2+/CaM inhibitors. Thus, Ca2+/CaM seems to be required for the stable interaction of EEA1 with endosomal PI(3)P, perhaps by directly or indirectly stabilizing the quaternary organization of the C-terminal FYVE domain of EEA1. This requirement is likely to underlie at least in part the essential role of Ca2+/CaM in endosome fusion.  相似文献   

11.
SNARE function is not involved in early endosome docking   总被引:1,自引:0,他引:1  
Docking and fusion of transport vesicles constitute elementary steps in intracellular membrane traffic. While docking is thought to be initiated by Rab-effector complexes, fusion is mediated by SNARE (N-ethylmaleimide-sensitive factor [NSF] attachment receptor) proteins. However, it has been recently debated whether SNAREs also play a role in the establishment or maintenance of a stably docked state. To address this question, we have investigated the SNARE dependence of docking and fusion of early endosomes, one of the central sorting compartments in the endocytic pathway. A new, fluorescence-based in vitro assay was developed, which allowed us to investigate fusion and docking in parallel. Similar to homotypic fusion, docking of early endosomes is dependent on the presence of ATP and requires physiological temperatures. Unlike fusion, docking is insensitive to the perturbation of SNARE function by means of soluble SNARE motifs, SNARE-specific Fab fragments, or by a block of NSF activity. In contrast, as expected, docking is strongly reduced by interfering with the synthesis of phosphatidyl inositol (PI)-3 phosphate, with the function of Rab-GTPases, as well as with early endosomal autoantigen 1 (EEA1), an essential tethering factor. We conclude that docking of early endosomes is independent of SNARE function.  相似文献   

12.
Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway.  相似文献   

13.
Using a microinjection approach to study apical plasma membrane protein trafficking in hepatic cells, we found that specific inhibition of Vps34p, a class III phosphoinositide 3 (PI-3) kinase, nearly perfectly recapitulated the defects we reported for wortmannin-treated cells (Tuma, P.L., C.M. Finnegan, J.-H Yi, and A.L. Hubbard. 1999. J. Cell Biol. 145:1089-1102). Both wortmannin and injection of inhibitory Vps34p antibodies led to the accumulation of resident apical proteins in enlarged prelysosomes, whereas transcytosing apical proteins and recycling basolateral receptors transiently accumulated in basolateral early endosomes. To understand how the Vps34p catalytic product, PI3P, was differentially regulating endocytosis from the two domains, we examined the PI3P binding protein early endosomal antigen 1 (EEA1). We determined that EEA1 distributed to two biochemically distinct endosomal populations: basolateral early endosomes and subapical endosomes. Both contained rab5, although the latter also contained late endosomal markers but was distinct from the transcytotic intermediate, the subapical compartment. When PI3P was depleted, EEA1 dissociated from basolateral endosomes, whereas it remained on subapical endosomes. From these results, we conclude that PI3P, via EEA1, regulates early steps in endocytosis from the basolateral surface in polarized WIF-B cells. However, PI3P must use different machinery in its regulation of the apical endocytic pathway, since later steps are affected by Vps34p inhibition.  相似文献   

14.
The hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, has been implicated in intracellular trafficking and signal transduction. Hrs contains a phosphatidylinositol 3-phosphate-binding FYVE domain that contributes to its endosomal targeting. Here we show that Hrs and EEA1, a FYVE domain protein involved in endocytic membrane fusion, are localized to different regions of early endosomes. We demonstrate that Hrs co-localizes with clathrin, and that the C-terminus of Hrs contains a functional clathrin box motif that interacts directly with the terminal beta-propeller domain of clathrin heavy chain. A massive recruitment of clathrin to early endosomes was observed in cells transfected with Hrs, but not with Hrs lacking the C-terminus. Furthermore, the phosphatidylinositol 3-kinase inhibitor wortmannin caused the dissociation of both Hrs and clathrin from endosomes. While overexpression of Hrs did not affect endocytosis and recycling of transferrin, endocytosed epidermal growth factor and dextran were retained in early endosomes. These results provide a molecular mechanism for the recruitment of clathrin onto early endosomes and suggest a function for Hrs in trafficking from early to late endosomes.  相似文献   

15.
In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.  相似文献   

16.
Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5.  相似文献   

17.
The early endosomal autoantigen EEA1 is essential for early endosomal membrane fusion. It binds to endosomes via a C-terminal domain (EEA1-CT). To identify proteins interacting with EEA1-CT, we screened a human brain library in the yeast two-hybrid system. Fourteen clones reacted strongly with EEA1-CT. Sequencing of these clones revealed that they all contained the ORF of the small GTPase, Rab5b. Further two-hybrid analysis suggested that Rab5b also interacts with the N-terminus of EEA1 (EEA1-NT). The interaction of both EEA1-CT and EEA1-NT with Rab5b was confirmed biochemically, and was found to be GTP dependent. Confocal immunofluorescence microscopy indicated that EEA1 colocalizes with Rab5b on early endosomes. Although EEA1-CT and EEA1-NT interacted strongly with wild-type Rab5b in the two-hybrid system, we detected no interaction with wild-type Rab5a, even though GTPase-deficient mutants of both Rab5a and Rab5b interacted equally well with EEA1. This difference could not be explained by differences in intrinsic GTPase activities, as these were found to be very similar. Instead, we speculate that yeast may contain a GTPase-activating protein (GAP) activity that stimulates Rab5a but not Rab5b. In contrast, pig brain cytosol was found to contain a GAP activity that stimulates the GTPase activity of Rab5b in preference to that of Rab5a. These data provide evidence that EEA1 interacts with both Rab5a and Rab5b, and that the GTPase activities of the two proteins are differentially regulated in vivo.  相似文献   

18.
Ramanathan HN  Ye Y 《Cell research》2012,22(2):346-359
The AAA (ATPase-associated with various cellular activities) ATPase p97 acts on diverse substrate proteins to partake in various cellular processes such as membrane fusion and endoplasmic reticulum-associated degradation (ERAD). In membrane fusion, p97 is thought to function in analogy to the related ATPase NSF (N-ethylmaleimide-sensitive fusion protein), which promotes membrane fusion by disassembling a SNARE complex. In ERAD, p97 dislocates misfolded proteins from the ER membrane to facilitate their turnover by the proteasome. Here, we identify a novel function of p97 in endocytic trafficking by establishing the early endosomal autoantigen 1 (EEA1) as a new p97 substrate. We demonstrate that a fraction of p97 is localized to the early endosome membrane, where it binds EEA1 via the N-terminal C2H2 zinc finger domain. Inhibition of p97 either by siRNA or a pharmacological inhibitor results in clustering and enlargement of early endosomes, which is associated with an altered trafficking pattern for an endocytic cargo. Mechanistically, we show that p97 inhibition causes increased EEA1 self-association at the endosome membrane. We propose that p97 may regulate the size of early endosomes by governing the oligomeric state of EEA1.  相似文献   

19.
Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments.  相似文献   

20.
Initial cellular uptake of cell penetrating peptide (CPP) linked macromolecules is usually endosomal, with passage from endosome to cytosol a major limitation to efficient delivery. To gain a better understanding of the passage of the CPP-linked proteins, we studied the uptake and localization of CPP-linked proteins that contained two different forms of fluorescent markers, GFP protein and chemically conjugated tetramethylrhodamine, in living cells. Rhodamine labeled TAT-GFP was internalized in multiple cell lines including HEK293, N18-RE-105, hippocampal slices, and human neural progenitor cells and showed predominantly endosomal localization of both fluorescent markers. Cytosolic localization of some rhodamine label was detected to suggest that some of the GFP label had exited from the endosome. However, quantification of the distribution of the rhodamine and GFP label indicated that the protein location was primarily endosomal and that the distribution of TAT-GFP was not significantly different than that of an exclusively endosomal localized exogenous protein (tetanus toxin fragment C - TTC). As a result, photochemical internalization (PCI) was evaluated and caused a significant quantitative redistribution of cellular fluorescence of rhodamine and GFP labels to demonstrate increased cytosolic delivery of GFP. While rhodamine-labeled TAT-GFP showed cytosolic delivery with exposure to specific wavelengths of fluorescent illumination, a similarly labeled GFP fusion protein containing the membrane binding domain of TTC did not mediate PCI in N18-RE-105 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号