首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth conditions known to influence the occurrence of mitochondrial profiles and other cell membrane systems in anaerobic cells of S. cerevisiae have been examined, and the effect of the several growth media on the lipid composition of the organism has been determined. The anaerobic cell type containing neither detectable mitochondrial profiles nor the large cell vacuole may be obtained by the culture of the organism on growth-limiting levels of the lipids, ergosterol, and unsaturated fatty acids. Under these conditions, the organism has a high content of short-chain saturated fatty acids (10:0, 12:0), phosphatidyl choline, and squalene, compared with aerobically grown cells, and it is especially low in phosphatidyl ethanolamine and the glycerol phosphatides (phosphatidyl glycerol + cardiolipin). The high levels of unsaturated fatty acids normally found in the phospholipids of the aerobic cells are largely replaced by the short-chain saturated acids, even though the phospholipid fraction contains virtually all of the small amounts of unsaturated fatty acid present in the anaerobic cells. Such anaerobic cells may contain as little as 0.12 mg of ergosterol per g dry weight of cells while the aerobic cells contain about 6 mg of ergosterol per g dry weight. Anaerobic cell types containing mitochondrial profiles can be obtained by the culture of the organism in the presence of excess quantities of ergosterol and unsaturated fatty acids. Such cells have increased levels of total phospholipid, ergosterol, and unsaturated fatty acids, although these compounds do not reach the levels found in aerobic cells. The level of ergosterol in anaerobic cells is markedly influenced by the nature of the carbohydrate in the medium; those cells grown on galactose media supplemented with ergosterol and unsaturated fatty acids have well defined mitochondrial profiles and an ergosterol content (2 mg per g dry weight of cells) three times that of equivalent glucose-grown cells which have poorly defined organelle profiles. Anaerobic cells which are low in ergosterol synthesize increased amounts of squalene.  相似文献   

2.
When ethanol is added to the growth medium of Clostridium thermocellum ATCC 27405 and C9, a different membrane composition is observed after the period of growth arrest. Changes in fatty acid composition and some unsaturated, branched hydrocarbons have been monitored by GLC-MS. There is a marked increase in normal and anteiso-branched fatty acids at the expense of isobranched fatty acids and an increase in short and unsaturated fatty acids. Thus, an adaptive response to growth in the presence of ethanol induces a membrane containing fatty acids with lower melting points and produces a more ‘fluid’ membrane. The suggestion is made that these membrane changes may be maladaptive to the performance of C. thermocellum.  相似文献   

3.
The metabolism of lipids, like that of other components, was adversely and strongly affected when rice (Oryza sativa L.) coleoptiles were grown anaerobically. In aerobic coleoptiles, the amounts of total fatty acid, phospholipid, and total lipid per coleoptile increased by 2.5- to 3-fold between days three and seven, whereas under anoxia, the increases were all less than 60%. The total amount of lipid at day seven in anoxia was less than 30% of that in air. In air, the total fatty acid content at day three was 25 nanomoles per coleoptile and this increased to over 71 nanomoles per coleoptile at day seven. All acids except 18:0 showed substantial increases. In anoxia, the corresponding values for total fatty acids were 24 nanomoles and 27 nanomoles. The small increases were confined to the saturated fatty acids; no significant increase occurred in unsaturated fatty acids. A minor fatty acid constituent (16:1) increased from 0.09 to 1.99 nanomoles per coleoptile between days three and seven in air. This component was never observed in any fatty acid preparation from anaerobic coleoptiles. The major phospholipids under all conditions were phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidic acid. A small amount of unidentified phosphoester, not present on thin layer chromatography plates from aerobic coleoptiles, was seen in extracts of anaerobic coleoptiles. The fatty acyl substituents of each of the phospholipids were analyzed at days three and seven in coleoptiles grown aerobically and in anoxia. Each phospholipid had its own distinctive fatty acid composition which remained fairly constant under all treatments; 16:0 and 18:2 were the most abundant fatty acids in every phospholipid class. In air, the percentages of total fatty acids that were in the phospholipids were 86% on day three and 87% on day seven. In anoxia, the values at the corresponding ages were 47 and 57%. Since no net synthesis of unsaturated fatty acids occurred in anaerobic conditions, the small increase in total unsaturated acids in the phospholipids between days three and seven must have occurred at the expense of fatty acids preexisting in the neutral lipid. No unusual pathways of biosynthesis or unusual precursors are required to explain the presence of unsaturated fatty acids in the rice coleoptile. The present study and results of experiments where coleoptiles were fed [14C]acetate (BB Vartapetian et al. 1978 Plant Sci Lett 13:321-328) clearly show that unsaturated fatty acid synthesis in rice coleoptiles requires O2, as it does in other plants.  相似文献   

4.
Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.  相似文献   

5.
The nature of the endogenous reserves of Saccharomyces cerevisiae was examined with respect to conditions of growth, specifically extremes of oxygen tension and carbon source. Cells were grown in batch culture at 30 C under aerobic conditions on a galactose or glucose carbon source and under anaerobic conditions on glucose. The greatest effect of growth conditions on the chemical composition of the cells was on their fatty acid and sterol content.Cells grown under both aerobic and anaerobic conditions mobilised concurrently protein, glycogen, trehalose and fatty acids during a period of 72 hours' starvation under aerobic conditions. The viability of both types of the aerobically grown cells declined to 75% during this period and was not influenced by the initial fatty acid and sterol content of the cells. Cells grown anaerobically showed a more rapid decline in viability which was only 17% after 72 hours' starvation. This loss of viability was not due to a lack of available endogenous reserves but was probably due to an impaired membrane function caused by a deficiency of sterols and unsaturated fatty acids.  相似文献   

6.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

7.
Fatty acid and sterol content and composition were determined for the dimorphic mold, Mucor genevensis, grown under a variety of experimental conditions. Fatty acids account for 6 to 9% of the dry weight of aerobically grown mycelium, and 70 to 80% of these are unsaturated. The organism contains γ-linolenic acid which is characteristic for Phycomycetes, and in sporangiospores this compound represents 40% of the total fatty acids. Of the sterols found in mycelium, 80% is ergosterol, and stigmasterol was positively identified as one of the minor components. In anaerobically grown yeastlike cells, sterol content is less than 10% of the level found in aerobically grown cells, and fatty acids amount to less than 2% of the dry weight. These fatty acids are predominantly short chain and less than 10% are unsaturated. Yeastlike cells obtained under aerobic conditions by growth in the presence of phenethyl alcohol have fatty acid and sterol compositions characteristic of aerobically grown mycelium. It is concluded that the dimorphology of the organism is not directly related to lipid composition.  相似文献   

8.
A chemostat culture technique has been developed for the growth of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae. Any chosen steady-state cellular unsaturated fatty acid level between 75 and 15% of the total fatty acids could be established and maintained. In all cultures the steady-state glucose concentrations were maintained at levels below that which induces catabolite repression.The efficiency of oxidative phosphorylation as determined from the molar growth yield decreased as the cellular unsaturated fatty acid composition was lowered. The number of moles of ATP produced by oxidative phosphorylation per mole of glucose utilized was 7.2, 4.8, 0.7, and 0.4 for cells in which 75, 50, 44, and 34%, respectively, of the total fatty acids were unsaturated.The lesion in oxidative phosphorylation was a direct result of lowering the membrane unsaturated fatty acid composition as the respiratory activities and cytochrome content of cells and mitochondria were unaffected by a decrease in the cellular unsaturated fatty acid level from the wild-type value of about 75% down to about 34%.In cells which contained lipids with 22–28% unsaturated fatty acids, cyanide-sensitive respiration was absent, and the levels of all mitochondrial cytochromes were less than 10% of normal. The reduction in the levels of cytochromes aa3 and b appeared to be a consequence of a loss of mitochondrial protein synthetic activity in such cells. The level of cytochrome c was also greatly decreased, indicating that the cellular unsaturated fatty acid composition was affecting either the synthesis in the cytoplasm of mitochondrial proteins or the assembly of these proteins in the mitochondria.  相似文献   

9.
Abstract The fatty acid composition of cultures of Shewanella putrefaciens strain ACAM 342 grown aero-bically and anaerobically at 15°C and 25°C were analysed by capillary gas chromatography. The bacterium was found to produce the polyunsaturated fatty acids (PUFA) 18:2ω3, 18:3ω3 and 20:5ω3 under aerobic and anaerobic conditions at both growth temperatures. This result suggests that the bacterium possesses both the aerobic and anaerobic pathways for unsaturated fatty acid synthesis, where an alternate terminal electron acceptor(s) is utilised in the absence of oxygen.  相似文献   

10.
The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an increase in the degree of saturation of their membrane fatty acids when grown in the presence of sublethal concentrations of the chemicals. Next to palmitic acid C16:0, the fatty acid pattern of D. multivorans was dominated by anteiso-branched fatty acids which are characteristic for several sulfate-reducing bacteria. The cells responded to the solvents with an increase in the ratio of straight-chain saturated (C14:0, C16:0, C18:0) to anteiso-branched fatty acids (C15:0anteiso, C17:0anteiso, C17:1anteisoΔ9cis). The results show that anaerobic bacteria react with similar mechanisms like aerobic bacteria in order to adapt their membrane to toxic organic solvents. The observed adaptive modifications on the level of membrane fatty acid composition can only be carried out with de novo synthesis of the fatty acids which is strictly related to cell growth. As the growth rates of anaerobic bacteria are generally much lower than in the so far investigated aerobic bacteria, this adaptive response needs more time in anaerobic bacteria. This might be one explanation for the previously observed higher sensitivity of anaerobic bacteria when compared with aerobic ones.  相似文献   

11.
The viability of Streptococcus lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h was better preserved when the cells were grown in medium supplemented with oleic acid or Tween 80 (polyoxyethylene sorbitan monooleate). A pronounced change in the cellular fatty acid composition was noted when the bacteria were grown in the presence of Tween 80. In S. lactis the ratio of unsaturated to saturated fatty acids increased from 1.18 to 2.55 and in Lactobacillus sp. A-12 it increased from 0.85 to 1.67 when Tween 80 was added to the growth medium. The antibiotic cerulenin markedly inhibited the growth of lactic acid bacteria in tomato juice (TJ) medium but had almost no effect on the growth of the bacteria in TJ medium containing Tween 80 (or oleic acid). The antibiotic inhibited markedly the incorporation of [1-14C]acetate but had no inhibitory effect on the incorporation of exogenous [1-14C]oleate (or [1-14C]palmitate) into the lipid fractions of lactic acid bacteria. Thus, the fatty acid composition of lactic acid bacteria, inhibited by the antibiotic cerulenin, can be modulated by exogenously added oleic acid (or Tween 80) without the concurrent endogenous fatty acid synthesis from acetate. The data obtained suggest that cerulenin inhibits neither cyclopropane fatty acid synthesis nor elongation of fatty acid acyl intermediates. The radioactivity of cells grown in the presence of [1-14C]oleate and cerulenin was associated mainly with cyclopropane Δ19:0, 20:0 + 20:1, and 21:0 acids. As a consequence, cerulenin caused a decrease in the ratio of unsaturated to saturated fatty acids in lactic acid bacteria as compared with cells grown in TJ medium plus Tween 80 but without cerulenin. Cerulenin caused a decrease in the viability of S. lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h only when Tween 80 was present in the growth medium. We conclude that the sensitivity of lactic acid bacteria to damage from freezing can be correlated with specific alterations in the cellular fatty acids.  相似文献   

12.
The fatty acid composition of the phospholipids from the desiccation-tolerant moss Tortula ruralis (Hedw.) Gaertn, Meyer and Scherb and the desiccation-intolerant moss Cratoneuron filicinum has been determined. No changes in composition occur in either moss as a consequence of rapid drying, but, after slow drying, there is a decline in some unsaturated fatty acids. Upon rehydration of T. ruralis after slow drying, these acids decline further; however, within 105 minutes, they regain the same levels as those in undesiccated controls. A smaller and more transient decline occurs after rapid desiccation. Most phospholipid unsaturated fatty acids decrease during rehydration of C. filicinum, and their levels are not recovered. After both rapid and slow drying of T. ruralis, acetate and glycerol are incorporated into the phospholipid fraction, although de novo synthesis, alone, might not account for the increase in unsaturated fatty acids upon rehydration. Very little acetate or glycerol is incorporated during rehydration of C. filicinum. Loss of unsaturated fatty acids from the phospholipids of T. ruralis does not appear to be associated with increased lipoxygenase activity. Furthermore, there is little correlation between the extent of peroxidation of fatty acids due to desiccation and changes in the phospholipid fraction.  相似文献   

13.
Fatty acid composition of the phospholipids of mouse LM cells grown in suspension culture in serum-free chemically defined medium was modified by supplementing the medium with various fatty acids bound to bovine serum albumin.Following supplementation with saturated fatty acids of longer than 15 carbons (100 μM) profound inhibition of cell growth occurred; this inhibitory effect was completely abolished when unsaturated fatty acids were added at the same concentration. Supplementing with unsaturated fatty acids such as linoleic acid, linolenic acid or arachidonic acid had no effect on the cell growth.Fatty acid composition of membrane phospholipids could be manipulated by addition of different fatty acids. The normal percentage of unsaturated fatty acids in LM cell membrane phospholipids (63%) was reduced to 35–41% following incorporation of saturated fatty acids longer than 15 carbon atoms and increased to 72–82% after addition of unsaturated fatty acids.A good correlation was found between the unsaturated fatty acid content of membrane phospholipids and cell growth. When incorporated saturated fatty acids reduced the percentage of unsaturated fatty acids in membrane phospholipids to less than 50%, severe inhibition of the cell growth was found. Simultaneous addition of an unsaturated fatty acid completely abolished this effect of saturated fatty acids.  相似文献   

14.
Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.  相似文献   

15.
As part of its aerobic metabolism, Streptococcus pneumoniae generates high levels of H2O2 by pyruvate oxidase (SpxB), which can be further reduced to yield the damaging hydroxyl radicals via the Fenton reaction. A universal conserved adaptation response observed among bacteria is the adjustment of the membrane fatty acids to various growth conditions. The aim of the present study was to reveal the effect of endogenous reactive oxygen species (ROS) formation on membrane composition of S. pneumoniae. Blocking carbon aerobic metabolism, by growing the bacteria at anaerobic conditions or by the truncation of the spxB gene, resulted in a significant enhancement in fatty acid unsaturation, mainly cis-vaccenic acid. Moreover, reducing the level of OH· by growing the bacteria at acidic pH, or in the presence of an OH· scavenger (salicylate), resulted in increased fatty acid unsaturation, similar to that obtained under anaerobic conditions. RT-PCR results demonstrated that this change does not originate from a change in mRNA expression level of the fatty acid synthase II genes. We suggest that endogenous ROS play an important regulatory role in membrane adaptation, allowing the survival of this anaerobic organism at aerobic environments of the host.  相似文献   

16.
  1. The lipid composition of a mutant ofSaccharomyces cerevisiae which cannot synthesize unsaturated fatty acid (UFA) can be extensively manipulated by growing the organism in the presence of added fatty acids.
  2. Growth of the mutant is supported by a wide range of unsaturated fatty acids including oleic, palmitoleic, petroselenic, 11-eicosaenoic, ricinoleic, arachidonic, clupanodonic, linoleic and linolenic acids; 9- and 10-hydroxystearic acids support growth less effectively, but erucic, nervonic, elaidic and saturated fatty acids (C8∶0?C20∶0)* are ineffective. All the fatty acids which support growth are incorporated into cell lipids, apparently without further metabolism.
  3. The effects of altered lipid composition on the energy metabolism of yeast cells were investigated. Cells containing less than approximately 20% of their fatty acids as UFA cannot grow on non-fermentable substrates, and their growth on glucose is restricted to that which can be supported by fermentation alone.
  4. UFA-depleted cells contain mitochondria which are apparently normal in morphology, furthermore they have normal levels of cytochromesa+a 3,b,c 1 andc and respire at normal rates. This suggests that the lesion in energy metabolism produced by UFA-depletion may be the loss of the ability of the mitochondria to couple respiration to phosphorylation.
  5. UFA-depleted cells incorporate added UFA into their cell lipids and subsequently regain the ability to grow on non-fermentable substrates, showing that the lesion in energy metabolism is fully reversible.
  相似文献   

17.
Environmental contamination with selenium is a major health concern. A few bacterial strains have been isolated that can transform toxic selenite to non-toxic elemental selenium only at low concentrations (0.001–150 mM) in recent past. We have previously reported isolation and characterization of few selenite-tolerant bacterial strains. These strains were found to be resistant to selenite at (300–600 mM) concentrations. In the present study we have characterized some physiological adaptations of strains Enterobacter sp. AR-4, Bacillus sp. AR-6 and Delftia tsuruhatensis AR-7 during exposure to higher concentration of selenite under aerobic and anaerobic environments. Adaptive responses are largely associated with alteration of cell morphology and change in total cellular fatty acid composition. Interestingly, electron microscopy studies revealed substantial decrease in cell size and intracellular deposition of Se0 crystals when reduction is carried out under aerobic conditions. On the other hand, cell size increased with adhesion of Se0 on cell surface during anaerobic reduction. Fatty acid composition analysis demonstrated selective increase in saturated and cyclic fatty acids and decrease in unsaturated ones during aerobic transformation. Changes observed during anaerobic transformation were in surprising contrast as indicated by total absence of saturated and cyclic fatty acids. Results presented here provide evidences for putative occurrence of two distinct mechanisms involved in tolerance towards higher concentrations of selenite utilization under aerobic and anaerobic conditions. Further, prior exposure to higher concentration of Se+4 enabled rapid adaptation indicating role of inducible system in adaptation.  相似文献   

18.
M Wada  N Fukunaga    S Sasaki 《Journal of bacteriology》1989,171(8):4267-4271
Biosynthesis of palmitic, palmitoleic, and cis-vaccenic acids in Pseudomonas sp. strain E-3 was investigated with in vitro and in vivo systems. [1-14C]palmitic acid was aerobically converted to palmitoleate and cis-vaccenate, and the radioactivities on their carboxyl carbons were 100 and 43%, respectively, of the total radioactivity in the fatty acids. Palmitoyl coenzyme A desaturase activity was found in the membrane fraction. [1-14C]stearic acid was converted to octadecenoate and C16 fatty acids. The octadecenoate contained oleate and cis-vaccenate, but only oleate was produced in the presence of cerulenin. [1-14C]lauric acid was aerobically converted to palmitate, palmitoleate, and cis-vaccenate. Under anaerobic conditions, palmitate (62%), palmitoleate (4%), and cis-vaccenate (34%) were produced from [1-14C]acetic acid, while they amounted to 48, 39, and 14%, respectively, under aerobic conditions. In these incorporation experiments, 3 to 19% of the added radioactivity was detected in released 14CO2, indicating that part of the added fatty acids were oxidatively decomposed. Partially purified fatty acid synthetase produced saturated and unsaturated fatty acids with chain lengths of C10 to C18. These results indicated that both aerobic and anaerobic mechanisms for the synthesis of unsaturated fatty acid are operating in this bacterium.  相似文献   

19.
Fermentation at low pH is an efficient way to improve the competitiveness of biological succinic acid-producing process. Actinobacillus succinogenes shows good performance of succinic acid production under anaerobic conditions, but its succinic acid production capability at the low-pH is inefficient due to the poor acid resistance. Herein, a mutant A. succinogenes BC-4 with improved cell growth and succinic acid production under weak acid conditions was obtained by adaptive evolution. The specific growth rate and succinic acid production of BC-4 reached 0.13 g/L/h and 20.77 g/L, which were increased by 3.25- and 2.95- fold, respectively compared with the parent strain under anaerobic condition at pH 5.8. The activities of specific enzymes with ATP generation were significantly enhanced under weak acidic conditions, resulting in 1.28-fold increase in the maximum ATP level. Membrane fatty acid composition analysis demonstrated that the ratio of saturated to unsaturated fatty acids was decreased from 1.62 to 1.44 in mutant BC-4, leading to improved intracellular pH homeostasis. Furthermore, the change from long-chain to median-chain fatty acid might lower the permeability of H+ into cytoplasm for survival under acid stress. These results indicated that A. succinogenes BC-4 is a promising candidate for succinic acid production under weak acid condition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号