首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Different patterns of drug resistance are observed in treated and therapy naïve HIV-1 infected populations. Especially the NRTI-related M184I/V variants, which are among the most frequently encountered mutations in treated patients, are underrepresented in the antiretroviral naïve population. M184I/V mutations are known to have a profound effect on viral replication and tend to revert over time in the new host. However it is debated whether a diminished transmission efficacy of HIV variants with a reduced replication capacity can also contribute to the observed discrepancy in genotypic patterns.As dendritic cells (DCs) play a pivotal role in HIV-1 transmission, we used a model containing primary human Langerhans cells (LCs) and DCs to compare the transmission efficacy M184 variants (HIV-M184V/I/T) to HIV wild type (HIV-WT). As control, we used HIV harboring the NNRTI mutation K103N (HIV-K103N) which has a minor effect on replication and is found at a similar prevalence in treated and untreated individuals.

Results

In comparison to HIV-WT, the HIV-M184 variants were less efficiently transmitted to CCR5+ Jurkat T cells by both LCs and DCs. The transmission rate of HIV-K103N was slightly reduced to HIV-WT in LCs and even higher than HIV-WT in DCs. Replication experiments in CCR5+ Jurkat T cells revealed no apparent differences in replication capacity between the mutant viruses and HIV-WT. However, viral replication in LCs and DCs was in concordance with the transmission results; replication by the HIV-M184 variants was lower than replication by HIV-WT, and the level of replication of HIV-K103N was intermediate for LCs and higher than HIV-WT for DCs.

Conclusions

Our data demonstrate that drug resistant M184-variants display a reduced replication capacity in LCs and DCs which directly impairs their transmission efficacy. As such, diminished transmission efficacy may contribute to the lower prevalence of drug resistant variants in therapy naive individuals.
  相似文献   

2.
In the skin, there are unique dendritic cells called Langerhans cells, however, it remains unclear why this particular type of dendritic cell resides in the epidermis. Langerhans cell-like dendritic cells (LCs) can be generated from CD14(+) monocytes in the presence of GM-CSF, IL-4, and TGF-beta1. We compared LCs with monocyte-derived dendritic cells (DCs) generated from CD14(+) monocytes in the presence of GM-CSF and IL-4 and examined the effect of exposure to two distinct bacterial stimuli via Toll-like receptors (TLRs), such as peptidoglycan (PGN) and lipopolysaccharide (LPS) on LCs and DCs. Although stimulation with both ligands induced a marked up-regulation of CD83 expression on DCs, PGN but not LPS elicited up-regulation of expression CD83 on LCs. Consistent with these results, TLR2 and TLR4 were expressed on DCs, whereas only TLR2 was weakly detected on LCs. These findings suggest the actual feature of epidermal Langerhans cells with low-responsiveness to skin commensals.  相似文献   

3.
The C-type lectin DC-SIGN expressed on immature dendritic cells (DCs) captures human immunodeficiency virus (HIV) particles and enhances the infection of CD4+ T cells. This process, known as trans-enhancement of T-cell infection, has been related to HIV endocytosis. It has been proposed that DC-SIGN targets HIV to a nondegradative compartment within DCs and DC-SIGN-expressing cells, allowing incoming virus to persist for several days before infecting target cells. In this study, we provide several lines of evidence suggesting that intracellular storage of intact virions does not contribute to HIV transmission. We show that endocytosis-defective DC-SIGN molecules enhance T-cell infection as efficiently as their wild-type counterparts, indicating that DC-SIGN-mediated HIV internalization is dispensable for trans-enhancement. Furthermore, using immature DCs that are genetically resistant to infection, we demonstrate that several days after viral uptake, HIV transfer from DCs to T cells requires viral fusion and occurs exclusively through DC infection and transmission of newly synthesized viral particles. Importantly, our results suggest that DC-SIGN participates in this process by cooperating with the HIV entry receptors to facilitate cis-infection of immature DCs and subsequent viral transfer to T cells. We suggest that such a mechanism, rather than intracellular storage of incoming virus, accounts for the long-term transfer of HIV to CD4+ T cells and may contribute to the spread of infection by DCs.  相似文献   

4.
Based on the relative expression of CD11c and CD1a, we have identified three fractions of dendritic cells (DCs) in human peripheral blood, including a direct precursor of Langerhans cells (LCs). The first two fractions were CD11c+ DCs, comprised of a major CD1a+/CD11c+ population (fraction 1), and a minor CD1a-/CD11c+ component (fraction 2). Both CD11c+ fractions displayed a monocyte-like morphology, endocytosed FITC-dextran, expressed CD45RO and myeloid markers such as CD13 and CD33, and possessed the receptor for GM-CSF. The third fraction was comprised of CD1a-/CD11c- DCs (fraction 3) and resembled plasmacytoid T cells. These did not uptake FITC-dextran, were negative for myeloid markers (CD13/CD33), and expressed CD45RA and a high level of IL-3Ralpha, but not GM-CSF receptors. After culture with IL-3, fraction 3 acquired the characteristics of mature DCs; however, the expression of CD62L (lymph node-homing molecules) remained unchanged, indicating that fraction 3 can be a precursor pool for previously described plasmacytoid T cells in lymphoid organs. Strikingly, the CD1a+/CD11c+ DCs (fraction 1) quickly acquired LC characteristics when cultured in the presence of GM-CSF + IL-4 + TGF-beta1. Thus, E-cadherin, Langerin, and Lag Ag were expressed within 1 day of culture, and typical Birbeck granules were observed. In contrast, neither CD1a-/CD11c+ (fraction 2) nor CD1a-/CD11c- (fraction 3) cells had the capacity to differentiate into LCs. Furthermore, CD14+ monocytes only expressed E-cadherin, but lacked the other LC markers after culture in these cytokines. Therefore, CD1a+/CD11c+ DCs are the direct precursors of LCs in peripheral blood.  相似文献   

5.
The susceptibility of monocyte-derived cultured dendritic cells (DCs) to human immunodeficiency virus (HIV) infection and their role in viral transmission in the immune response were studied in detail. We observed that highly purified cultured DCs were infected with the T-tropic Lai strain of HIV type 1 (HIV-1Lai) via the CD4 receptor, and this was followed by formation of the complete provirus as detected by PCR. HIV mRNAs were transcribed at only low levels, and virus production was undectable; however, the addition of the purified protein derivative antigen of tuberculin and of autologous resting T cells to HIV-1Lai-infected DCs but not to HIV-1Lai-infected macrophages led to massive HIV transmission and production. These data suggest that the interaction of infected DCs with T cells during the normal immune response could play an important role in the activation and expansion of HIV.  相似文献   

6.
Sustained Ag expression by human dendritic cells (DCs) is an attractive means of optimizing Ag presentation for stimulating durable cellular immunity. To establish proof of principle, we used Langerhans cell (LC) progeny of retrovirally transduced CD34(+) hemopoietic progenitor cells to stimulate responses against the HLA-A*0201-restricted influenza matrix peptide (fluMP). Retroviral transduction of CD34(+) hemopoietic progenitor cells, during pre-expansion by thrombopoietin, c-kit ligand, and FLT-3 ligand, on recombinant fibronectin, but in the absence of FCS, resulted in gene expression by 20-30% of the LCs. Expression persisted at least 28 days, with little decline (<30%) over that time. Retroviral transduction did not alter the phenotype or potent immunogenicity of normal mature DCs. FluMP-transduced LCs stimulated a 130-fold expansion of T cells reactive with HLA-A*0201-fluMP tetramers, even at LC:T cell ratios of 1:100-150 and lower, whereas fluMP-pulsed LCs stimulated only a 30-fold expansion. FluMP-transduced LCs also stimulated higher IFN-gamma secretion (100-123 spot-forming cells/10(5) CD8(+) T cells) than did fluMP-pulsed LCs (10-91 spot-forming cells/10(5) CD8(+) T cells). CD8(+) T cells stimulated by transduced LCs did not react preferentially with retrovirally transduced targets, indicating that the responses targeted only the immunizing influenza and not the retroviral vector Ags, even though these could have provided nonspecific helper epitopes presented by the transduced LCs. These data demonstrate that gene-transduced LCs maintain the activated phenotype as well potent immunogenicity typical of mature DCs. LCs genetically modified to express fluMP are also more potent stimulators of Ag-specific CD8(+) T cell responses than are peptide-pulsed LCs.  相似文献   

7.
The emerging heterogeneity of dendritic cells (DCs) mirrors their increasingly recognized division of labor at myriad control points in innate and acquired cellular immunity. We separately generated blood monocyte-derived DCs (moDCs), as well as Langerhans cells (LCs) and dermal-interstitial DCs (DDC-IDCs) from CD34(+) hematopoietic progenitor cells. Differential expression of CD11b, CD52, CD91, and the CD1 isoforms proved useful in distinguishing these three DC types. All mature DCs uniformly expressed comparable levels of HLA-DR, CD83, CD80, and CD86, and were potent stimulators of allogeneic T cells after exposure either to recombinant human CD40L trimer or a combination of inflammatory cytokines with PGE(2). moDCs, however, required 0.5-1 log greater numbers than LCs or DDC-IDCs to stimulate comparable T cell proliferation. Only moDCs secreted the bioactive heterodimer IL-12p70, and moDCs phagocytosed significantly more dying tumor cells than did either LCs or DDC-IDCs. LCs nevertheless proved superior to moDCs and DDC-IDCs in stimulating CTL against a recall viral Ag by presenting passively loaded peptide or against tumor Ag by cross-priming autologous CD8(+) T cells. LCs also secreted significantly more IL-15 than did either moDCs or DDC-IDCs, which is especially important to the generation of CTL. These findings merit further comparisons in clinical trials designed to determine the physiologic relevance of these distinctions in activity between LCs and other DCs.  相似文献   

8.
Studies from a number of laboratories have shown that the myeloid lineage is prominent in human cytomegalovirus (HCMV) latency, reactivation, dissemination, and pathogenesis. Existing as a latent infection in CD34(+) progenitors and circulating CD14(+) monocytes, reactivation is observed upon differentiation to mature macrophage or dendritic cell (DC) phenotypes. Langerhans' cells (LCs) are a subset of periphery resident DCs that represent a DC population likely to encounter HCMV early during primary infection. Furthermore, we have previously shown that CD34(+) derived LCs are a site of HCMV reactivation ex vivo. Accordingly, we have utilized healthy-donor CD34(+) cells to study latency and reactivation of HCMV in LCs. However, the increasing difficulty acquiring healthy-donor CD34(+) cells--particularly from seropositive donors due to the screening regimens used--led us to investigate the use of CD14(+) monocytes to generate LCs. We show here that CD14(+) monocytes cultured with transforming growth factor β generate Langerin-positive DCs (MoLCs). Consistent with observations using CD34(+) derived LCs, only mature MoLCs were permissive for HCMV infection. The lytic infection of mature MoLCs is productive and results in a marked inhibition in the capacity of these cells to promote T cell proliferation. Pertinently, differentiation of experimentally latent monocytes to the MoLC phenotype promotes reactivation in a maturation and interleukin-6 (IL-6)-dependent manner. Intriguingly, however, IL-6-mediated effects were restricted to mature LCs, in contrast to observations with classical CD14(+) derived DCs. Consequently, elucidation of the molecular basis behind the differential response of the two DC subsets should further our understanding of the fundamental mechanisms important for reactivation.  相似文献   

9.
Incorporation of Ags by dendritic cells (DCs) increases when Ags are targeted to endocytic receptors by mAbs. We have previously demonstrated in the mouse that mAbs against C-type lectins administered intradermally are taken up by epidermal Langerhans cells (LCs), dermal Langerin(neg) DCs, and dermal Langerin(+) DCs in situ. However, the relative contribution of these skin DC subsets to the induction of immune responses after Ag targeting has not been addressed in vivo. We show in this study that murine epidermal LCs and dermal DCs transport intradermally injected mAbs against the lectin receptor DEC-205/CD205 in vivo. Skin DCs targeted in situ with mAbs migrated through lymphatic vessels in steady state and inflammation. In the skin-draining lymph nodes, targeting mAbs were found in resident CD8α(+) DCs and in migrating skin DCs. More than 70% of targeted DCs expressed Langerin, including dermal Langerin(+) DCs and LCs. Numbers of targeted skin DCs in the nodes increased 2-3-fold when skin was topically inflamed by the TLR7 agonist imiquimod. Complete removal of the site where OVA-coupled anti-DEC-205 had been injected decreased endogenous cytotoxic responses against OVA peptide-loaded target cells by 40-50%. Surprisingly, selective ablation of all Langerin(+) skin DCs in Langerin-DTR knock-in mice did not affect such responses independently of the adjuvant chosen. Thus, in cutaneous immunization strategies where Ag is targeted to DCs, Langerin(+) skin DCs play a major role in transport of anti-DEC-205 mAb, although Langerin(neg) dermal DCs and CD8α(+) DCs are sufficient to subsequent CD8(+) T cell responses.  相似文献   

10.
Dendritic cells (DCs) are activated by signaling via pathogen-specific receptors or exposure to inflammatory mediators. Here we show that co-culturing DCs with apoptotic HIV-infected activated CD4(+) T cells (ApoInf) or apoptotic uninfected activated CD4(+) T cells (ApoAct) induced expression of co-stimulatory molecules and cytokine release. In addition, we measured a reduced HIV infection rate in DCs after co-culture with ApoAct. A prerequisite for reduced HIV infection in DCs was activation of CD4(+) T cells before apoptosis induction. DCs exposed to ApoAct or ApoInf secreted MIP-1α, MIP-1β, MCP-1, and TNF-α; this effect was retained in the presence of exogenous HIV. The ApoAct-mediated induction of co-stimulatory CD86 molecules and reduction of HIV infection in DCs were partially abrogated after blocking TNF-α using monoclonal antibodies. APOBEC3G expression in DCs was increased in co-cultures of DCs and ApoAct but not by apoptotic resting CD4(+) T cells (ApoRest). Silencing of APOBEC3G in DC abrogated the HIV inhibitory effect mediated by ApoAct. Sequence analyses of an env region revealed significant induction of G-to-A hypermutations in the context of GG or GA dinucleotides in DNA isolated from DCs exposed to HIV and ApoAct. Thus, ApoAct-mediated DC maturation resulted in induction of APOBEC3G that was important for inhibition of HIV-infection in DCs. These findings underscore the complexity of differential DC responses evoked upon interaction with resting as compared with activated dying cells during HIV infection.  相似文献   

11.
The mechanism by which immunity to Herpes Simplex Virus (HSV) is initiated is not completely defined. HSV initially infects mucosal epidermis prior to entering nerve endings. In mice, epidermal Langerhans cells (LCs) are the first dendritic cells (DCs) to encounter HSV, but it is CD103+ dermal DCs that carry viral antigen to lymph nodes for antigen presentation, suggesting DC cross-talk in skin. In this study, we compared topically HSV-1 infected human foreskin explants with biopsies of initial human genital herpes lesions to show LCs are initially infected then emigrate into the dermis. Here, LCs bearing markers of maturation and apoptosis formed large cell clusters with BDCA3+ dermal DCs (thought to be equivalent to murine CD103+ dermal DCs) and DC-SIGN+ DCs/macrophages. HSV-expressing LC fragments were observed inside the dermal DCs/macrophages and the BDCA3+ dermal DCs had up-regulated a damaged cell uptake receptor CLEC9A. No other infected epidermal cells interacted with dermal DCs. Correspondingly, LCs isolated from human skin and infected with HSV-1 in vitro also underwent apoptosis and were taken up by similarly isolated BDCA3+ dermal DCs and DC-SIGN+ cells. Thus, we conclude a viral antigen relay takes place where HSV infected LCs undergo apoptosis and are taken up by dermal DCs for subsequent antigen presentation. This provides a rationale for targeting these cells with mucosal or perhaps intradermal HSV immunization.  相似文献   

12.
Human immunodeficiency virus-1 (HIV-1) is primarily transmitted sexually. Dendritic cells (DCs) in the subepithelium transmit HIV-1 to T cells through the C-type lectin DC-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin (DC-SIGN). However, the epithelial Langerhans cells (LCs) are the first DC subset to encounter HIV-1. It has generally been assumed that LCs mediate the transmission of HIV-1 to T cells through the C-type lectin Langerin, similarly to transmission by DC-SIGN on dendritic cells (DCs). Here we show that in stark contrast to DC-SIGN, Langerin prevents HIV-1 transmission by LCs. HIV-1 captured by Langerin was internalized into Birbeck granules and degraded. Langerin inhibited LC infection and this mechanism kept LCs refractory to HIV-1 transmission; inhibition of Langerin allowed LC infection and subsequent HIV-1 transmission. Notably, LCs also inhibited T-cell infection by viral clearance through Langerin. Thus Langerin is a natural barrier to HIV-1 infection, and strategies to combat infection must enhance, preserve or, at the very least, not interfere with Langerin expression and function.  相似文献   

13.
Dendritic cells (DCs) are among the first cells encountered by human and simian immunodeficiency virus (HIV and SIV) following mucosal infection. Because these cells efficiently capture and transmit virus to T cells, they may play a major role in mediating HIV and SIV infection. Recently, a C-type lectin protein present on DCs, DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), was shown to efficiently bind and present HIV and SIV to CD4(+), coreceptor-positive cells in trans. However, the significance of DC-SIGN for virus transmission and pathogenesis in vivo remains unclear. Because SIV infection of macaques may represent the best model to study the importance of DC-SIGN in HIV infection, we cloned and characterized pig-tailed macaque DC-SIGN and generated monoclonal antibodies (MAbs) against it. We demonstrate that, like human DC-SIGN, pig-tailed macaque DC-SIGN (ptDC-SIGN) is expressed on DCs and macrophages but not on monocytes, T cells, or B cells. Moderate levels of ptDC-SIGN expression were detected on the surface of DCs, and low-level expression was found on macrophages. Additionally, we show that ptDC-SIGN efficiently binds and transmits replication-competent SIVmne variants to CD4(+), coreceptor-positive cells. Moreover, transmission of virus between pig-tailed macaque DCs and CD4(+) T cells is largely ptDC-SIGN dependent. Interestingly, MAbs directed against ptDC-SIGN vary in the capacity to block transmission of different SIVmne variants. These data demonstrate that ptDC-SIGN plays a central role in transmitting virus from macaque DCs to T cells, and they suggest that SIVmne variants may differ in their interactions with ptDC-SIGN. Thus, SIVmne infection of pig-tailed macaques may provide an opportunity to investigate the significance of DC-SIGN in primate lentiviral infections.  相似文献   

14.
The C-type lectin dendritic cell-specific ICAM 3-grabbing nonintegrin (DC-SIGN)/CD209 efficiently binds several pathogens, including HIV-1. DC-SIGN is expressed on monocyte-derived DCs in culture, and importantly, it is able to sequester HIV-1 within cells and facilitate transmission of virus to CD4+ T cells. To investigate DC-SIGN function, we have generated new mAbs. We report in this study that these and prior anti-DC-SIGN mAbs primarily label macrophages in the medullary sinuses of noninflamed human lymph node. In contrast, expression is not detected on most DCs in the T cell area, except for occasional cells. We also noted that IL-4 alone can induce expression of DC-SIGN in CD14+ monocytes and circulating blood DCs. However, blockade of DC-SIGN with Abs and DC-SIGN small interfering RNA did not result in a major reduction in the capacity of these DCs to transfer HIV to T cells, confirming significant DC-SIGN-independent mechanisms. The blocking approaches did reduce HIV-1 transmission by DC-SIGN-transfected cells by >90%. DC-SIGN blockade also did not reduce the ability of DCs to stimulate T cell proliferation in the MLR. These results indicate that DC-SIGN has the potential to contribute to macrophage function in normal human lymph node, and that DCs do not require DC-SIGN to transmit HIV or to initiate T cell responses.  相似文献   

15.
Ex vivo foreskin models have demonstrated that inner foreskin is more susceptible to HIV-1 infection than outer foreskin. In the present study we characterized the compartition of HIV-1 target cells and quantified these cells in the epidermis and dermis of inner and outer foreskins using immunohistochemistry and flow cytometry. Our data showed that the epidermis of the inner foreskin was more enriched with CD4+ T cells and Langerhans cells (LCs), with the co-expression of CCR5 and α4β7 receptors, than the outer foreskin. Interestingly, the vast majority of CD4+ T cells and LCs expressed CCR5, but not CXCR4, indicating that the inner foreskin might capture and transmit R5-tropic HIV strains more efficiently. In addition, lymphoid aggregates, composed of T cells, macrophages and dendritic cells (DCs) in the dermis, were closer to the epithelial surface in the inner foreskin than in the outer foreskin. As dendritic cells are able to capture and pass HIV particles to susceptible target cells, HIV may be able to more efficiently infect the inner foreskin by hijacking the augmented immune communication pathways in this tissue. After the inoculation of HIV-1 particles in a foreskin explant culture model, the level of p24 antigen in the supernatant from the inner foreskin was slightly higher than that from the outer foreskin, although this difference was not significant. The present study is the first to employ both CCR5 and α4β7 to identify HIV target cells in the foreskin. Our data demonstrated that the inner foreskin was more enriched with HIV target immune cells than the outer foreskin, and this tissue was structured for efficient communication among immune cells that may promote HIV transmission and replication. In addition, our data suggests the R5-tropism of HIV sexual transmission is likely shaped through the inherent receptor composition on HIV target cells in the mucosa.  相似文献   

16.
From the site of transmission at mucosal surfaces, HIV is thought to be transported by DCs to lymphoid tissues. To initiate migration, HIV needs to activate DCs. This activation, reflected by intra- and extracellular changes in cell phenotype, is investigated in the present study. In two-thirds of the donors, R5- and X4-tropic HIV-1 strains induced partial up-regulation of DC activation markers such as CD83 and CD86. In addition, CCR7 expression was increased. HIV-1 initiated a transient phosphorylation of p44/p42 ERK1/2 in iDCs, whereas p38 MAPK was activated in both iDCs and mDCs. Up-regulation of CD83 and CD86 on DCs was blocked when cells were incubated with specific p38 MAPK inhibitors before HIV-1-addition. CCR7 expression induced by HIV-1 was sufficient to initiate migration of DCs in the presence of secondary lymphoid tissue chemokine (CCL21) and MIP-3beta (CCL19). Preincubation of DCs with a p38 MAPK inhibitor blocked CCR7-dependent DC migration. Migrating DCs were able to induce infection of autologous unstimulated PBLs in the Transwell system. These data indicate that HIV-1 triggers a cell-specific signaling machinery, thereby manipulating DCs to migrate along a chemokine gradient, which results in productive infection of nonstimulated CD4(+) cells.  相似文献   

17.
Transmission of measles virus (MV) to T cells by its early CD150(+) target cells is considered to be crucial for viral dissemination within the hematopoietic compartment. Using cocultures involving monocyte-derived dendritic cells (DCs) and T cells, we now show that T cells acquire MV most efficiently from cis-infected DCs rather than DCs having trapped MV (trans-infection). Transmission involves interactions of the viral glycoprotein H with its receptor CD150 and is therefore more efficient to preactivated T cells. In addition to rare association with actin-rich filopodial structures, the formation of contact interfaces consistent with that of virological synapses (VS) was observed where viral proteins accumulated and CD150 was redistributed in an actin-dependent manner. In addition to these molecules, activated LFA-1, DC-SIGN, CD81, and phosphorylated ezrin-radixin-moesin proteins, which also mark the HIV VS, redistributed toward the MV VS. Most interestingly, moesin and substance P receptor, both implicated earlier in assisting MV entry or cell-to-cell transmission, also partitioned to the transmission structure. Altogether, the MV VS shares important similarities to the HIV VS in concentrating cellular components potentially regulating actin dynamics, conjugate stability, and membrane fusion as required for efficient entry of MV into target T cells.  相似文献   

18.
Dendritic cells (DCs) initiate immune responses by transporting antigens and migrating to lymphoid tissues to initiate T-cell responses. DCs are located in the mucosal surfaces that are involved in human immunodeficiency virus (HIV) transmission and they are probably among the earliest targets of HIV-1 infection. DCs have an important role in viral transmission and dissemination, and HIV-1 has evolved different strategies to evade DC antiviral activity. High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can act as an alarmin, a danger signal to alert the innate immune system for the initiation of host defense. It is the prototypic damage-associated molecular pattern molecule, and it can be secreted by innate cells, including DCs and natural killer (NK) cells. The fate of DCs is dependent on a cognate interaction with NK cells, which involves HMGB1 expressed at NK–DC synapse. HMGB1 is essential for DC maturation, migration to lymphoid tissues and functional type-1 polarization of naïve T cells. This review highlights the latest advances in our understanding of the impact of HIV on the interactions between HMGB1 and DCs, focusing on the mechanisms of HMGB1-dependent viral dissemination and persistence in DCs, and discussing the consequences on antiviral innate immunity, immune activation and HIV pathogenesis.  相似文献   

19.
Although oral dendritic cells (DCs) were shown to induce cell-mediated immunity, the identity and function of the various oral DC subsets involved in this process is unclear. In this study, we examined the mechanisms used by DCs of the buccal mucosa and of the lining mucosa to elicit immunity. After plasmid DNA immunization, buccally immunized mice generated robust local and systemic CD8(+) T cell responses, whereas lower responses were seen by lining immunization. A delayed Ag presentation was monitored in vivo in both groups; yet, a more efficient presentation was mediated by buccal-derived DCs. Restricting transgene expression to CD11c(+) cells resulted in diminished CD8(+) T cell responses in both oral tissues, suggesting that immune induction is mediated mainly by cross-presentation. We then identified, in addition to the previously characterized Langerhans cells (LCs) and interstitial dendritic cells (iDCs), a third DC subset expressing the CD103(+) molecule, which represents an uncharacterized subset of oral iDCs expressing the langerin receptor (Ln(+)iDCs). Using Langerin-DTR mice, we demonstrated that whereas LCs and Ln(+)iDCs were dispensable for T cell induction in lining-immunized mice, LCs were essential for optimal CD8(+) T cell priming in the buccal mucosa. Buccal LCs, however, failed to directly present Ag to CD8(+) T cells, an activity that was mediated by buccal iDCs and Ln(+)iDCs. Taken together, our findings suggest that the mechanisms engaged by oral DCs to prime T cells vary between oral mucosal tissues, thus emphasizing the complexity of the oral immune network. Furthermore, we found a novel regulatory role for buccal LCs in potentiating CD8(+) T cell responses.  相似文献   

20.
The identification of surfactant protein A (SP-A) as an important innate immune factor of the lungs, amniotic fluid, and the vaginal tract suggests that it could play an important role during various stages of HIV disease progression and transmission. Therefore, we examined whether SP-A could bind to HIV and also had any effect on viral infectivity. Our data demonstrate that SP-A binds to HIV in a calcium-dependent manner that is inhibitable by mannose and EDTA. Affinity capture of the HIV viral lysate reveals that SP-A targets the envelope glycoprotein of HIV (gp120), which was confirmed by ELISA using recombinant gp120. Digestion of gp120 with endoglycosidase H abrogates the binding of SP-A, indicating that the high mannose structures on gp120 are the target of the collectin. Infectivity studies reveal that SP-A inhibits the infection of CD4+ T cells by two strains of HIV (BaL, IIIB) by >80%. Competition assays with CD4 and mAbs F105 and b12 suggest that SP-A inhibits infectivity by occlusion of the CD4-binding site. Studies with dendritic cells (DCs) demonstrate that SP-A enhances the binding of gp120 to DCs, the uptake of viral particles, and the transfer of virus from DCs to CD4+ T cells by >5-fold at a pH representative of the vaginal tract. Collectively, these results suggest that SP-A acts as a dual modulator of HIV infection by protecting CD4+ T cells from direct infection but enhancing the transfer of infection to CD4+ T cells mediated by DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号