首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We found that transformation by v-src constitutively activated phosphorylation of histone H3 at Ser10 in a transformation-specific manner. While nontransforming mutant of v-src did not activate H3 phosphorylation, H3 phosphorylation in cells expressing temperature-sensitive mutant of v-src was temperature-dependent. Inhibition of Ras signaling by Gap1m, a GTPase-activation protein for Ras, or S17N Ras, a dominant negative form of Ras, substantially suppressed the Ser10 phosphorylation of H3. Similarly, treatment of cells with manumycin A, a potent inhibitor of Ras-falnesyl transferase, clearly suppressed the H3 phosphorylation. In contrast, inhibition of STAT3 signaling or PI3K signaling did not perturb H3 phosphorylation. We found, however, inhibition of MEK or MSK1 markedly suppressed H3 phosphorylation. In addition, inhibition of MSK1 expression by its siRNA substantially suppressed H3 phosphorylation and anchorage-independent growth of transformed cells. Taken together, our results strongly suggest the importance of MSK1 and H3 phosphorylation in cell transformation by v-Src.  相似文献   

2.
In viral Src (v-Src)-transformed cells, focal adhesion kinase (FAK) associates with v-Src by combined v-Src SH2 and gain-of-function v-Src SH3 domain binding to FAK. Here we assess the significance of the Arg-95 to Trp gain-of-function mutation in the v-Src SH3 domain through comparisons of Src-/- fibroblasts transformed with either Prague C v-Src or a point mutant (v-Src-RT) containing a normal (Arg-95) SH3 domain. Both v-Src isoforms exhibited equivalent kinase activity, enhanced Src-/- cell motility, and stimulated cell growth in both low serum and soft agar. The stability of a v-Src-RT.FAK signaling complex and FAK phosphorylation at Tyr-861 and Tyr-925 were reduced in v-Src-RT- compared with v-Src-transformed cells. v-Src but not v-Src-RT promoted Src-/- cell invasion through a reconstituted Matrigel basement membrane barrier and v-Src co-localized with FAK and beta(1) integrin at invadopodia. In contrast, v-Src-RT exhibited a partial perinuclear and focal contact distribution in Src-/- cells. Adenovirus-mediated FAK overexpression promoted v-Src-RT recruitment to invadopodia, the formation of a v-Src-RT.FAK signaling complex, and reversed the v-Src-RT invasion deficit. Adenovirus-mediated inhibition of FAK blocked v-Src-stimulated cell invasion. These studies establish that gain-of-function v-Src SH3 targeting interactions with FAK at beta(1) integrin-containing invadopodia act to stabilize a v-Src.FAK signaling complex promoting cell invasion.  相似文献   

3.
Src, the canonical member of the non-receptor family of tyrosine kinases, is deregulated in numerous cancers, including colon and breast cancers. In addition to its effects on cell proliferation and motility, Src is often considered as an inhibitor of apoptosis, although this remains controversial. Thus, whether the ability of Src to generate malignancies relies on an intrinsic aptitude to inhibit apoptosis or requires preexistent resistance to apoptosis remains somewhat elusive. Here, using mouse fibroblasts transformed with v-Src as a model, we show that the observed Src-dependent resistance to cell death relies on Src ability to inhibit the mitochondrial pathway of apoptosis by specifically increasing the degradation rate of the BH3-only protein Bik. This effect relies on the activation of the Ras-Raf-Mek1/2-Erk1/2 pathway, and on the phosphorylation of Bik on Thr124, driving Bik ubiquitylation on Lys33 and subsequent degradation by the proteasome. Importantly, in a set of human cancer cells with Src-, Kras- or BRAF-dependent activation of Erk1/2, resistances to staurosporine or thapsigargin were also shown to depend on Bik degradation rate via a similar mechanism. These results suggest that Bik could be a rate-limiting factor for apoptosis induction of tumor cells exhibiting deregulated Erk1/2 signaling, which may provide new opportunities for cancer therapies.  相似文献   

4.
The ability of the focal adhesion kinase (FAK) to integrate signals from extracellular matrix and growth factor receptors requires the integrity of Tyr397, a major autophosphorylation site that mediates the Src homology 2-dependent binding of Src family kinases. However, the precise roles played by FAK in specific Src-induced pathways, especially as they relate to oncogenic transformation, remain unclear. Here, we investigate the role of FAK in v-Src-induced oncogenic transformation by transducing temperature-sensitive v-Src (ts72v-Src) into p53-null FAK+/+ or FAK-/- mouse embryo fibroblasts (MEF). At the permissive temperature (PT), ts72v-Src induced abundant tyrosine phosphorylation, morphological transformation and cytoskeletal rearrangement in FAK-/- MEF, including the restoration of cell polarity, typical focal adhesion complexes, and longitudinal F-actin stress fibers. v-Src rescued the haptotactic, linear directional, and invasive motility defects of FAK-/- cells to levels found in FAK+/+ or FAK+/+-[ts72v-Src] cells, and, in the case of monolayer wound healing motility, there was an enhancement. Src activation failed to increase the high basal tyrosine phosphorylation of the Crk-associated substrate, CAS, found in FAK-/- MEF, indicating that CAS phosphorylation alone is insufficient to induce motility in the absence of FAK- or v-Src-induced cytoskeletal remodeling. Compared with FAK+/+[ts72v-Src] controls, FAK-/-[ts72v-Src] clones exhibited 7-10-fold higher anchorage-independent proliferation that could not be attributed to variations in either v-Src protein level or stability. Re-expression of FAK diminished the colony-forming activities of FAK-/-[ts72v-Src] without altering ts72v-Src expression levels, suggesting that FAK attenuates Src-induced anchorage independence. Our data also indicate that the enhanced Pyk2 level found in FAK-/- MEF plays no role in v-Src-induced anchorage independence. Overall, our data indicate that FAK, although dispensable, attenuates v-Src-induced oncogenic transformation by modulating distinct signaling and cytoskeletal pathways.  相似文献   

5.
6.
Integrins facilitate cell attachment to the extracellular matrix, and these interactions generate cell survival, proliferation, and motility signals. Integrin signals are relayed in part by focal adhesion kinase (FAK) activation and the formation of a transient signaling complex initiated by Src homology 2 (SH2)-dependent binding of Src family protein-tyrosine kinases to the FAK Tyr-397 autophosphorylation site. Here we show that in viral Src (v-Src)-transformed NIH3T3 fibroblasts, an adhesion-independent FAK-Src signaling complex occurs. Co-expression studies in human 293T cells showed that v-Src could associate with and phosphorylate a Phe-397 FAK mutant at Tyr-925 promoting Grb2 binding to FAK in suspended cells. In vitro, glutathione S-transferase fusion proteins of the v-Src SH3 but not c-Src SH3 domain bound to FAK in lysates of NIH3T3 fibroblasts. The v-Src SH3-binding sites were mapped to known proline-X-X-proline (PXXP) SH3-binding motifs in the FAK N- (residues 371-377) and C-terminal domains (residues 712-718 and 871-882) by in vitro pull-down assays, and these sites are composed of a PXXPXXPhi (where Phi is a hydrophobic residue) v-Src SH3 binding consensus. Sequence comparisons show that residues in the RT loop region of the c-Src and v-Src SH3 domains differ. Substitution of c-Src RT loop residues (Arg-97 and Thr-98) for those found in the v-Src SH3 domain (Trp-97 and Ile-98) enhanced the binding of distinct NIH3T3 cellular proteins to a glutathione S-transferase fusion protein of the c-Src (Trp-97 + Ile-98) SH3 domain. FAK was identified as a c-Src (Trp-97 + Ile-98) SH3 domain target in fibroblasts, and co-expression studies in 293T cells showed that full-length c-Src (Trp-97 + Ile-98) could associate in vivo with Phe-397 FAK in an SH2-independent manner. These studies establish a functional role for the v-Src SH3 domain in stabilizing an adhesion-independent signaling complex with FAK.  相似文献   

7.
8.
FAK (focal adhesion kinase) is a nonreceptor protein-tyrosine kinase activated by tyrosine phosphorylation following integrin-mediated cell adhesion. Oncogenic Src promotes enhanced and deregulated FAK tyrosine phosphorylation which has been proposed to contribute to altered cell growth and/or morphological properties associated with transformation. In this study, an inducible FAK expression system was used to study the potential role of FAK in v-Src transformation. Our results portray FAK as a major v-Src substrate that also plays a role in recruiting v-Src to phosphorylate substrates CAS (Crk-associated substrate) and paxillin. The FAK Tyr-397 autophosphorylation site was necessary for this scaffolding function, but was not required for v-Src to stably interact with and phosphorylate FAK. FAK was also shown to negatively regulate v-Src mediated phosphorylation of the FAK-related kinase PYK2. Despite these effects, FAK does not play an essential role in targeting v-Src to major cellular substrates including CAS and paxillin. Nor is FAK strictly required to achieve the altered morphological and growth characteristics of v-Src transformed cells.  相似文献   

9.
Two eps8 isoforms, p97eps8 and p68eps8, were previously identified as substrates for receptor tyrosine kinases. Analysis of eps8 phosphotyrosine content in v-Src transformed cells (IV5) revealed that both isoforms were highly tyrosyl phosphorylated and their readiness to be phosphorylated by Src in vitro further indicated that they were putative Src substrates as well. Indeed, the enhancement of tyrosyl phosphorylation of p97eps8 detected in cells coexpressing both p97eps8 and active Src relative to that in cells expressing p97eps8 alone supported our hypothesis. The existence of common phosphotryptic peptides between in vitro 32P-labeled p97eps8 and p68eps8 indicated that these two proteins shared the same Src-mediated sites. Further in vitro binding assays demonstrated that p68eps8 was the major eps8 isoforms that could be precipitated by bacterial fusion protein containing Src SH3. Interestingly, both p68eps8 and p97eps8 were preferentially expressed in v-Src transformed cells and the presence of p68eps8 appeared to depend on Src. Since p97eps8 has been implicated in mitogenesis and tumorigenesis, its readiness to be phosphorylated and induced by v-Src might attribute to v-Src-mediated transformation.  相似文献   

10.
v-Src activates promoters under the control of 12-O-tetradecanoylphorbol-13-acetate (TPA) response elements (TREs) and serum response elements (SREs) via two distinguishable intracellular signaling mechanisms. The induction of TRE- and SRE-mediated gene expression by v-Src could be distinguished by a differential sensitivity to depleting cells of protein kinase C (PKC) and to a dominant negative Raf-1 mutant. Thus, PKC depletion and the dominant negative Raf-1 mutant were able to distinguish two intracellular signaling mechanisms activated by v-Src. Both of these v-Src-induced intracellular signals were sensitive to a dominant negative mutant of Ha-Ras. These data suggest that Ha-Ras functions to coordinately regulate multiple intracellular signaling mechanisms activated by v-Src.  相似文献   

11.
v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.  相似文献   

12.
The Src family of protein tyrosine kinases is involved in transducing signals at sites of cellular adhesion. In particular, the v-Src oncoprotein resides in cellular focal adhesions, where it induces tyrosine phosphorylation of pp125FAK and focal adhesion loss during transformation. v-Src is translocated to cellular focal adhesions by an actin-dependent process. Here we have used mutant v-Src proteins that are temperature-dependent for translocation, but with secondary mutations that render them constitutively kinase-inactive or myristylation-defective, to show that neither v-Src kinase activity nor a myristyl group are required to induce association of v-Src with actin stress fibres and redistribution to sites of focal adhesions at the stress fibre termini. Moreover, switching the constitutively kinase-inactive or myristylation-defective temperature-sensitive v-Src proteins to the permissive temperature resulted in concomitant association with tyrosine-phosphorylated focal adhesion kinase (pp125FAK) and redistribution of both to focal adhesions. However, both catalytic activity and myristylation-mediated membrane association are required to induce dissociation of pp125FAK from v-Src, later degradation of pp125FAK and focal adhesion turnover during transformation and cell motility. These observations provide strong evidence that the role of the tyrosine kinase activity of the Src family at sites of cellular focal adhesions is to regulate the turnover of these structures during cell motility.  相似文献   

13.
Cancer cells are capable of serum- and anchorage-independent growth, and focus formation on monolayers of normal cells. Previously, we showed that RACK1 inhibits c-Src kinase activity and NIH3T3 cell growth. Here, we show that RACK1 partially inhibits v-Src kinase activity, and the serum- and anchorage-independent growth of v-Src transformed cells, but has no effect on focus formation. RACK1-overexpressing v-Src cells show disassembly of podosomes, which are actin-rich structures that are distinctive to fully transformed cells. Together, our results demonstrate that RACK1 overexpression in v-Src cells partially reverses the transformed phenotype of the cells. Our results identify an endogenous inhibitor of the oncogenic Src tyrosine kinase and of cell transformation.  相似文献   

14.
The recently described focal adhesion kinase (FAK) has been implicated in signal transduction pathways initiated by cell adhesion receptor integrins and by neuropeptide growth factors. To examine the mechanisms by which FAK relays signals from the membrane to the cell interior, we carried out a series of experiments to detect potential FAK interactions with proteins containing Src homology 2 (SH2) domains that are important intracellular signaling molecules. Using v-Src-transformed NIH3T3 cells, we showed that FAK was present in the immune-complex precipitated by anti-Src antibody, suggesting potential interaction of FAK with v-Src in vivo. We also showed potentially direct interaction of FAK with v-Src in vivo using the yeast two-hybrid system. Using recombinant FAK expressed in insect cells and bacterial fusion proteins containing Src SH2 domains, we showed direct binding of FAK to the Src SH2 domain but not to the SH3 domain in vitro. A kinase-defective mutant of FAK, which is not autophosphorylated, did not interact with the Src SH2 domain under the same conditions, suggesting the involvement of the FAK autophosphorylation sites. Treatment of FAK with a protein-tyrosine phosphatase decreased its binding to the Src SH2 domain, whereas autophosphorylation in vitro increased its binding. These results confirm the importance of FAK autophosphorylation sites in its interaction with SH2 domain-containing proteins. Taken together, these results suggest that FAK may mediate signal transduction events initiated on the cell surface by kinase activation and autophosphorylation that result in its binding to other key intracellular signaling molecules.  相似文献   

15.
Active, wild-type v-Src and its kinase-dead double Y416F-K295N mutant were expressed in hamster fibroblasts. Expression of the active v-Src induced activation of endogenous c-Src and increased general protein-tyrosine phosphorylation in the infected cells. Expression of the kinase-dead mutant induced hypophosphorylation of Tyr416 of the endogenous c-Src. The inactivation of c-Src was reversible, as confirmed by in vitro kinase activity of c-Src immunoprecipitated from the kinase-dead v-Src-expressing cells. Both activation and inactivation of c-Src may be explained by direct interaction of the v-Src and c-Src that may either facilitate transphosphorylation of the regulatory Tyr416 in the activation loop, or prevent it by formation of transient dead-end complexes of the Y416F-K295N mutant with c-Src. The interaction was also indicated by co-localization of v- and c-Src proteins in immunofluorescent images of the infected cells. These results suggest that dimerization of Src plays an important role in the regulation of Src tyrosine kinase activity.  相似文献   

16.
17.
An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded.  相似文献   

18.
N Yokoyama  W T Miller 《FEBS letters》1999,456(3):403-408
To study the role of the catalytic domain in v-Src substrate specificity, we engineered three site-directed mutants (Leu-472 to Tyr or Trp and Thr-429 to Met). The mutant forms of Src were expressed in Sf9 cells and purified. We analyzed the substrate specificities of wild-type v-Src and the mutants using two series of peptides that varied at residues C-terminal to tyrosine. The peptides contained either the YMTM motif found in insulin receptor substrate-1 (IRS-1) or the YGEF motif identified from peptide library experiments to be the optimal sequence for Src. Mutations at positions Leu-472 or Thr-429 caused changes in substrate specificity at positions P+1 and P+3 (i.e. one or three residues C-terminal to tyrosine). This was particularly evident in the case of the L-472W mutant, which had pronounced alterations in its preferences at the P+1 position. The results suggest that residue Leu-472 plays a role in P+1 substrate recognition by Src. We discuss the results in the light of recent work on the roles of the SH2, SH3 and catalytic domains of Src in substrate specificity.  相似文献   

19.
Cellular transformation by v-Src is believed to be caused by aberrant activation of signaling pathways that are normally regulated by cellular Src. Using normal rat kidney cells expressing a temperature-sensitive mutant of v-Src, we examined the role of the Raf/MEK/ERK, phosphatidylinositol 3-kinase/Akt, and Rho pathways in morphological transformation and cytoskeletal changes induced by v-Src. Activation of v-Src elicited a loss of actin stress fibers and focal contacts. A decrease in the phosphorylation level of cofilin was detected upon v-Src activation, which is indicative of attenuated Rho function. Inhibition of MEK using U0126 prevented v-Src-induced disruption of the cytoskeleton as well as dephosphorylation of cofilin, whereas treatment with a phosphatidylinositol 3-kinase inhibitor had no protective effect. In normal rat kidney cells stably transformed by v-Src, we found that the chronic activation of MEK induces down-regulation of ROCK expression, thereby uncoupling Rho from stress fiber formation. Taken together, these results establish MEK as an effector of v-Src-induced cytoskeleton disruption, participating in v-Src-induced antagonism of the cellular function of Rho.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号