首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extrachromosomal DNA was discovered in Naegleria gruberi. The 3,000 to 5,000 copies per cell of this 14-kilobase-pair circular plasmid carry all the 18S, 28S, and 5.8S rRNA genes. The presence of the ribosomal DNA of an organism exclusively on a circular extrachromosomal element is without precedent, and Naegleria is only the third eucaryotic genus in which a nuclear plasmid DNA has been found.  相似文献   

2.
Southern blotting of DNA from the ascomycetous yeast Yarrowia lipolytica revealed two major size classes of DNA units coding for rRNAs, which differ in length by about 1000 bp. We have cloned an rDNA unit of each size class. R-looping experiments revealed that the rRNA genes of both units are uninterrupted; subsequent heteroduplex analysis showed that the size difference both units is located within the nontranscribed spacer. Sequence analysis revealed that a major part of these spacers consists of a complex pattern of repetitions in periodicities of up to about 150 bp and that the difference between both rDNA units are located mainly in this repetitive region. Apart from different lengths of the repetitive regions, both rDNA units also reveal extended microheterogeneity within their homologous parts. Furthermore, no gene for 5S rRNA was observed in the spacer region. Therefore, the organization of the spacer of Yarrowia rDNA is clearly different from that of Saccharomyces cerevisiae.  相似文献   

3.
In Saccharomyces cerevisiae strain 6-1G-P188 about 10 per cent of rRNA genes exist as extrachromosomal copies of rDNA repeating units. These extrachromosomal copies can be isolated as covalently closed molecules with lengths around 3mu. We have constructed a set of hybrid plasmids containing the bacterial vector pBR325, the LEU2 gene of yeast encoding beta-isopropylmalatedehydrogenase and various EcoRI restriction fragments of the 3mu DNA. We have tested the ability of our hybrid plasmids to transform LEU2 strain DC5 to leucine prototrophy. One of the plasmids Rcp21/11 transforms DC5 at the frequency comparable with that obtained with YEp13, containing the 2mu DNA replication origin. The 2400 bp EcoRI-B fragment of the 3mu DNA in Rcp21/11 carries a gene for 5S rRNA and two spacers. Our results on transformation experiments allow un to suggest that this EcoRI fragment also carries the 3mu DNA replication origin. Yeast transformants containing this plasmid are highly unstable but during the prolonged growth in selective conditions the stabilization of the LEU+ phenotype is observed being most likely a result of integration of Rcp21/11 into the yeast chromosome.  相似文献   

4.
In most organisms, the nuclear ribosomal RNA (rRNA) genes are highly repetitive and arranged as tandem repeats on one or more chromosomes. In Entamoeba, however, these genes are located almost exclusively on extrachromosomal circular DNA molecules with no clear evidence so far of a chromosomal copy. Such an uncommon location of rRNA genes may be a direct consequence of cellular physiology, as suggested by studies with Saccharomyces cerevisiae mutants in which the rDNA is extrachromosomal. In this review, Sudha Bhattacharya, Indrani Som and Alok Bhattacharya summarize current knowledge on the structural organization and replication of the Entamoeba rDNA plasmids. Other than the rRNAs encoded by these molecules, no protein-coding genes (including ribosomal protein genes) are found on any of them. They are unique among plasmids in that they do not initiate replication from a fixed origin but use multiple sites dispersed throughout the molecule. Further studies should establish the unique biochemical features of Entamoeba that lead to extrachromosomal rDNA.  相似文献   

5.
6.
7.
8.
The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number.  相似文献   

9.
10.
A L Lu  N Blin  D W Stafford 《Gene》1981,14(1-2):51-62
A 1.35-kb EcoRI fragment of Lytechinus variegatus DNA containing a single 5S rRNA gene has been cloned into the plasmid vector pACYC184. Four clones from different transformation experiments contain 5S rDNA inserts of about the same size and have the same restriction enzyme digestion patterns for the enzymes HaeIII, HinfI, HhaI, and AluI. One EcoRI site near the HindIII site of the plasmid vector pACYC184 is missing in all the four clones. By DNA sequencing, the missing EcoRI ws found to be EcoRI site, d(AAATTN)d(TTTAAN) in pLu103, one of the four 5S rDNA clones. The structure of pLu103 was determined by restriction mapping and blot hybridization. Three restriction fragments, 1.0-kb HaeIII/HaeIII, 0.375-kb AluI/AluI and 0.249-kb MboII/MboII, which contain the 5S rRNA coding region, have been subcloned into the EcoRI site of the plasmid pACYC184. The organization of 5S rRNA genes in the sea urchin genome was also investigated. It was found that restriction endonuclease HaeIII has a single recognition site within each 5S rDNA repeat, and yields two fragment lengths, 1.2 and 1.3 kb. The behavior of these 5S rRNA genes when total L. variegatus DNA is partially digested with HaeIII is consistent with an arrangement of 5S rRNA genes in at least two tandemly repeated, non-interspersed families. Both the coding region and spacer region of the 5S rRNA gene in pLu103 hybridize to 1.2 and 1.3-kb rDNA families. This indicates that the cloned EcoRI fragment of 5S rDNA in pLu103 represents one single repeat of 5S rDNA in the genome.  相似文献   

11.
12.
13.
14.
E Roux  L Graf    E Stutz 《Nucleic acids research》1983,11(7):1957-1968
An extra 16S rRNA gene (s-16S rDNA) from the Euglena gracilis chloroplast genome and several hundred positions of its flanking regions have been sequenced. The structural part has 1486 positions and is to 98% homologous in its sequence with the 16S rRNA gene in functional chloroplast rRNA operons. Sequences of about 200 positions upstream and 15 positions downstream of the structural part of the s-16S rRNA gene region are highly homologous with corresponding parts in the functional operon. Neither tRNA genes (A1a, I1e) nor parts of the 23S and 5S rRNA genes are found within 557 positions after the 3' end of the s-16S rRNA gene, i.e., the 330 bp homology, observed in electron microscopic studies of heteroduplexes (4), between the s-16S rDNA downstream region and the 6.2 kb repeated segment containing the functional rRNA operon, must be due to a DNA stretch in the interoperon spacer. A structural model of the "truncated rRNA operon" is presented. Results from S-1 endonuclease analysis suggest that the s-16S rDNA region is probably not transcribed into stable s-16S rRNA.  相似文献   

15.
16.
A complete single unit of a ribosomal RNA gene (rDNA) of M. croslandi was sequenced. The ends of the 18S, 5.8S and 28S rRNA genes were determined by using the sequences of D. melanogaster rDNAs as references. Each of the tandemly repeated rDNA units consists of coding and non-coding regions whose arrangement is the same as that of D. melanogaster rDNA. The intergenic spacer (IGS) contains, as in other species, a region with subrepeats, of which the sequences are different from those previously reported in other insect species. The length of IGSs was estimated to be 7-12 kb by genomic Southern hybridization, showing that an rDNA repeating unit of M. croslandi is 14-19 kb-long. The sequences of the coding regions are highly conserved, whereas IGS and ITS (internal transcribed spacer) sequences are not. We obtained clones with insertions of various sizes of R2 elements, the target sequence of which was found in the 28S rRNA coding region. A short segment in the IGS that follows the 3' end of the 28S rRNA gene was predicted to form a secondary structure with long stems.  相似文献   

17.
S Cory  J M Adams 《Cell》1977,11(4):795-805
The organization of the 18S, 28S and 5.8S rRNA genes in the mouse has been elucidated by mapping with restriction endonucleases Eco RI, Hind III and Bam HI. Ribosomal DNA fragments were detected in electrophoretically fractionated digests of total nuclear DNA by in situ hybridization with radioiodinated rRNAs or with complementary RNA synthesized directly on rRNA templates. A map of the rDNA which includes 13 restriction sites was constructed from the sizes of rDNA fragments and their labeling by different probes The map indicates that the rRNA genes lie within remarkably large units of reiterated DNA, at least 44,000 base pairs long. At least two, and possibly four, classes of repeating unit can be distinguished, the heterogeneity probably residing in the very large nontranscribed spacer region. The 5.8S rRNA gene lies in the transcribed region between the 18S and 28S genes.  相似文献   

18.
19.
The 5S rRNA gene of the soybean Glycine max (L.) Merr. has been cloned on a 556-bp fragment of DNA and sequenced. This fragment contains two copies of the soybean 5S rDNA sequence, one intact and one truncated, separated by noncoding DNA. We have used this clone to investigate the organization of the 5S genes within the soybean genome and the extent of their methylation. Our results demonstrate that soybean 5S genes are clustered, organized into tandem repeats of 330 bp, and extensively methylated. Hybridization of the 5S sequence to Southern transfers of soybean DNA digested with BamHI reveals a striking ladderlike pattern. Hybridization of the soybean 5S sequence to a wide variety of plant DNAs results in similar patterns, suggesting that the 5S rDNA sequence, gene organization, and methylation pattern are conserved in many higher plants.  相似文献   

20.
The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号