首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Solution structure of a zinc finger domain of yeast ADR1   总被引:14,自引:0,他引:14  
  相似文献   

3.
4.
5.
Characterisation of the DNA binding domain of the yeast RAP1 protein.   总被引:13,自引:1,他引:13       下载免费PDF全文
The 827 amino acid yeast RAP1 protein interacts with DNA to regulate gene expression at numerous unrelated loci in the yeast genome. By a combination of amino, carboxy and internal deletions, we have defined an internal 235 amino acid fragment of the yeast RAP1 protein that can bind efficiently to the RAP1 binding site of the PGK Upstream Activation Sequence (UAS). This domain spans residues 361 to 596 of the full length protein and lacks any homology to the DNA binding 'zinc finger' or 'helix-turn-helix' structural motifs. All the RAP1 binding sites we have tested bind domain 361-596, arguing that RAP1 binds all its chromosomal sites via this domain. The domain could not be further reduced in size suggesting that it represents the minimal functional DNA binding domain. The relevance of potential regions of secondary structure within the minimal binding domain is discussed.  相似文献   

6.
7.
Defining a minimal estrogen receptor DNA binding domain.   总被引:7,自引:3,他引:4       下载免费PDF全文
  相似文献   

8.
9.
Specific DNA binding of GAL4, a positive regulatory protein of yeast   总被引:173,自引:0,他引:173  
E Giniger  S M Varnum  M Ptashne 《Cell》1985,40(4):767-774
  相似文献   

10.
11.
12.
13.
The yeast phosphatidylinositol transfer protein (Sec14p) is required for biogenesis of Golgi-derived transport vesicles and cell viability, and this essential Sec14p requirement is abrogated by inactivation of the CDP-choline pathway for phosphatidylcholine biosynthesis. These findings indicate that Sec14p functions to alleviate a CDP-choline pathway-mediated toxicity to yeast Golgi secretory function. We now report that this toxicity is manifested through the action of yeast Kes1p, a polypeptide that shares homology with the ligand-binding domain of human oxysterol binding protein (OSBP). Identification of Kes1p as a negative effector for Golgi function provides the first direct insight into the biological role of any member of the OSBP family, and describes a novel pathway for the regulation of Golgi-derived transport vesicle biogenesis.  相似文献   

14.
15.
16.
Multidrug resistance protein (MRP) confers resistance to a number of natural product chemotherapeutic agents. It is also a high affinity transporter of some physiological conjugated organic anions such as cysteinyl leukotriene C(4) and the cholestatic estrogen, 17beta-estradiol 17(beta-D-glucuronide) (E(2)17betaG). We have shown that the murine orthologue of MRP (mrp), unlike the human protein, does not confer resistance to common anthracyclines and is a relatively poor transporter of E(2)17betaG. We have taken advantage of these functional differences to identify region(s) of MRP involved in mediating anthracycline resistance and E(2)17betaG transport by generating mrp/MRP hybrid proteins. All hybrid proteins conferred resistance to the Vinca alkaloid, vincristine, when transfected into human embryonic kidney cells. However, only those in which the COOH-terminal third of mrp had been replaced with the corresponding region of MRP-conferred resistance to the anthracyclines, doxorubicin, and epirubicin. Exchange of smaller segments of the COOH-terminal third of the mouse protein by replacement of either amino acids 959-1187 or 1188-1531 with those of MRP produced proteins capable of conferring some level of resistance to the anthracyclines tested. All hybrid proteins transported cysteinyl leukotriene C(4) with similar efficiencies. In contrast, only those containing the COOH-terminal third of MRP transported E(2)17betaG with an efficiency comparable with that of the intact human protein. The results demonstrate that differences in primary structure of the highly conserved COOH-terminal third of mrp and MRP are important determinants of the inability of the murine protein to confer anthracycline resistance and its relatively poor ability to transport E(2)17betaG.  相似文献   

17.
18.
We have delineated the region of yeast ribosomal protein L25 responsible for its specific binding to 26 S rRNA by a novel approach using in vitro synthesized, [35S]methionine-labeled fragments as well as point mutants of the L25 protein. The rRNA binding capacity of these mutant polypeptides was tested by incubation with an in vitro transcribed, biotinylated fragment of yeast 26 S rRNA that contains the complete L25 binding site. Protein-rRNA interaction was assayed by binding of the rRNA-r-protein complex to streptavidin-agarose followed either by analysis of the bound polypeptide by SDS/polyacrylamide gel electrophoresis or by precipitation with trichloroacetic acid. Our results show that the structural elements necessary and sufficient for specific interaction of L25 with 26 S rRNA are contained in the region bordered by amino acids 62 and 126. The remaining parts of the protein, in particular the C-terminal 16 residues, while not essential for binding, do enhance its affinity for 26 S rRNA. To test whether, as suggested by the results of the deletion experiments, the evolutionarily conserved sequence motif K120KAYVRL126 is involved in rRNA binding, we replaced the leucine residue at position 126 by either isoleucine or lysine. The first substitution did not affect binding. The second, however, completely abolished the specific rRNA binding capacity of the protein. Thus, Leu126, and possibly the whole conserved sequence motif, plays a key role in binding of L25 to 26 S rRNA.  相似文献   

19.
20.
The adenylyl cyclase system of the yeast Saccharomyces cerevisiae contains the CYR1 polypeptide, responsible for catalyzing formation of cAMP from ATP, and two RAS polypeptides, responsible for stimulation of cAMP synthesis by guanine nucleotides. We have obtained rabbit antibodies that recognize the CYR1 protein. Antibodies were raised against synthetic oligopeptides and against a recombinant beta-galactosidase/CYR1 fusion protein. These antibodies have allowed the identification of the CYR1 gene product as a 205 kDa protein. Treatment with trypsin (2 micrograms/ml) reduced the size of the CYR1 protein from 205 to 155 kDa and produced an activated enzyme which no longer responded to guanine nucleotides. This result is consistent with a model in which adenylyl cyclase activity is regulated by an inhibitory domain near the amino-terminus of the CYR1 protein. This model is further supported by the finding that adenylyl cyclase activity is also markedly elevated and unresponsive to guanine nucleotides in mutant yeast strains that express only the carboxy-terminal half of the CYR1 protein. Treatment with high trypsin concentrations (greater than 10 micrograms/ml) caused release of adenylyl cyclase activity from the membrane. Comparison of immunoreactive CYR1 fragments released by trypsin and membrane bound genetically altered proteins suggests that the CYR1 protein is attached to the membrane via a separate trypsin sensitive anchoring protein rather than via a membrane anchoring domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号