首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular mechanisms of seed dormancy   总被引:5,自引:0,他引:5  
Seed dormancy is an important component of plant fitness that causes a delay of germination until the arrival of a favourable growth season. Dormancy is a complex trait that is determined by genetic factors with a substantial environmental influence. Several of the tissues comprising a seed contribute to its final dormancy level. The roles of the plant hormones abscisic acid and gibberellin in the regulation of dormancy and germination have long been recognized. The last decade saw the identification of several additional factors that influence dormancy including dormancy-specific genes, chromatin factors and non-enzymatic processes. This review gives an overview of our present understanding of the mechanisms that control seed dormancy at the molecular level, with an emphasis on new insights. The various regulators that are involved in the induction and release of dormancy, the influence of environmental factors and the conservation of seed dormancy mechanisms between plant species are discussed. Finally, expected future directions in seed dormancy research are considered.  相似文献   

2.
From 50 to 90% of wild plant species worldwide produce seeds that are dormant upon maturity, with specific dormancy traits driven by species' occurrence geography, growth form, and genetic factors. While dormancy is a beneficial adaptation for intact natural systems, it can limit plant recruitment in restoration scenarios because seeds may take several seasons to lose dormancy and consequently show low or erratic germination. During this time, seed predation, weed competition, soil erosion, and seed viability loss can lead to plant re‐establishment failure. Understanding and considering seed dormancy and germination traits in restoration planning are thus critical to ensuring effective seed management and seed use efficiency. There are five known dormancy classes (physiological, physical, combinational, morphological, and morphophysiological), each requiring specific cues to alleviate dormancy and enable germination. The dormancy status of a seed can be determined through a series of simple steps that account for initial seed quality and assess germination across a range of environmental conditions. In this article, we outline the steps of the dormancy classification process and the various corresponding methodologies for ex situ dormancy alleviation. We also highlight the importance of record‐keeping and reporting of seed accession information (e.g. geographic coordinates of the seed collection location, cleaning and quality information, storage conditions, and dormancy testing data) to ensure that these factors are adequately considered in restoration planning.  相似文献   

3.
Seed dormancy and germination.   总被引:25,自引:0,他引:25  
  相似文献   

4.
Seed dormancy is an adaptive trait in plants. Breaking seed dormancy determines the timing of germination and is, thereby essential for ensuring plant survival and agricultural production. Seed dormancy and the subsequent germination are controlled by both internal cues (mainly hormones) and environmental signals. In the past few years, the roles of plant hormones in regulating seed dormancy and germination have been uncovered. However, we are only beginning to understand how light signaling pathways modulate seed dormancy and interaction with endogenous hormones. In this review, we summarize current views of the molecular mechanisms by which light controls the induction, maintenance and release of seed dormancy, as well as seed germination, by regulating hormone metabolism and signaling pathways.  相似文献   

5.
尹华军  刘庆 《植物学报》2004,21(2):156-163
休眠与萌发是植物种子对环境变化的适应特征,受许多基因调控和环境因子的影响。利用数量遗传学方法(如QTL 分析)和突变等手段已对休眠和萌发特性进行了深入的遗传学研究。近些年来,随着分子生物学的快速发展,种子休眠和萌发研究已经深入到分子水平。分子生物学技术的运用,特别是基因表达、基因组测序和以双向凝胶电泳及质谱分析为技术基础的蛋白质组学分析,已成为研究种子休眠和萌发的新工具和新方向。本文主要就利用分子生物学方法研究种子休眠与萌发的进展给予简要综述。  相似文献   

6.
? Seed dormancy can affect life history through its effects on germination time. Here, we investigate its influence on life history beyond the timing of germination. ? We used the response of Arabidopsis thaliana to chilling at the germination and flowering stages to test the following: how seed dormancy affects germination responses to the environment; whether variation in dormancy affects adult phenology independently of germination time; and whether environmental cues experienced by dormant seeds have an effect on adult life history. ? Dormancy conditioned the germination response to low temperatures, such that prolonged periods of chilling induced dormancy in nondormant seeds, but stimulated germination in dormant seeds. The alleviation of dormancy through after-ripening was associated with earlier flowering, independent of germination date. Experimental dormancy manipulations showed that prolonged chilling at the seed stage always induced earlier flowering, regardless of seed dormancy. Surprisingly, this effect of seed chilling on flowering time was observed even when low temperatures did not induce germination. ? In summary, seed dormancy influences flowering time and hence life history independent of its effects on germination timing. We conclude that the seed stage has a pronounced effect on life history, the influence of which goes well beyond the timing of germination.  相似文献   

7.
休眠是种子植物在长期进化过程中产生的适应性性状, 通过抑制种子在不适宜的环境中萌发进而保证植物能够在逆境中生存。此外, 休眠有助于种子的长距离运输和扩散, 因此休眠对种子延续和物种保存具有重要意义。种子由休眠向萌发的发育转变不仅关系到物种的繁衍, 而且对保证农业生产中作物的产量和品质也具有重要作用。种子的休眠和萌发受到内源激素和外源光信号的共同调控。其中, 外源光信号主要通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠和萌发。该文系统综述了外源光信号和内源激素调控种子休眠和萌发的作用通路以及两类信号通路之间的交互作用, 旨在为农业生产中利用光和激素调控种子休眠与萌发提供参考。  相似文献   

8.
光信号与激素调控种子休眠和萌发研究进展   总被引:1,自引:0,他引:1  
休眠是种子植物在长期进化过程中产生的适应性性状, 通过抑制种子在不适宜的环境中萌发进而保证植物能够在逆境中生存。此外, 休眠有助于种子的长距离运输和扩散, 因此休眠对种子延续和物种保存具有重要意义。种子由休眠向萌发的发育转变不仅关系到物种的繁衍, 而且对保证农业生产中作物的产量和品质也具有重要作用。种子的休眠和萌发受到内源激素和外源光信号的共同调控。其中, 外源光信号主要通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠和萌发。该文系统综述了外源光信号和内源激素调控种子休眠和萌发的作用通路以及两类信号通路之间的交互作用, 旨在为农业生产中利用光和激素调控种子休眠与萌发提供参考。  相似文献   

9.
The temporal control or timing of the life cycle of annual plants is presumed to provide adaptive strategies to escape harsh environments for survival and reproduction. This is mainly determined by the timing of germination, which is controlled by the level of seed dormancy, and of flowering initiation. However, the environmental factors driving the evolution of plant life cycles remain largely unknown. To address this question we have analysed nine quantitative life history traits, in a native regional collection of 300 wild accessions of Arabidopsis thaliana. Seed dormancy and flowering time were negatively correlated, indicating that these traits have coevolved. In addition, environmental–phenotypic analyses detected strong altitudinal and climatic clines for most life history traits. Overall, accessions showing life cycles with early flowering, small seeds, high seed dormancy and slow germination rate were associated with locations exposed to high temperature, low summer precipitation and high radiation. Furthermore, we analysed the expression level of the positive regulator of seed dormancy DELAY OF GERMINATION 1 (DOG1), finding similar but weaker altitudinal and climatic patterns than seed dormancy. Therefore, DOG1 regulatory mutations are likely to provide a quantitative molecular mechanism for the adaptation of A. thaliana life cycle to altitude and climate.  相似文献   

10.
Frey  Anne  Audran  Corinne  Marin  Elena  Sotta  Bruno  Marion-Poll  Annie 《Plant molecular biology》1999,39(6):1267-1274
Abscisic acid (ABA) is a plant hormone synthesized during seed development that is involved in the induction of seed dormancy. Delayed germination due to seed dormancy allows long-term seed survival in soil but is generally undesirable in crop species. Freshly harvested seeds of wild-type Nicotiana plumbaginifolia plants exhibit a clear primary dormancy that results in delayed germination, the degree of primary dormancy being influenced by environmental culture conditions of the mother plant. In contrast, seeds, obtained either from ABA-deficient mutant aba2-s1 plants directly or aba2-s1 plants grafted onto wild-type plant stocks, exhibited rapid germination under all conditions irrespective of the mother plant culture conditions. The ABA biosynthesis gene ABA2 of N. plumbaginifolia, encoding zeaxanthin epoxidase, was placed under the control of the constitutive 35S promoter. Transgenic plants overexpressing ABA2 mRNA exhibited delayed germination and increased ABA levels in mature seeds. Expression of an antisense ABA2 mRNA, however, resulted in rapid seed germination and in a reduction of ABA abundance in transgenic seeds. It appears possible, therefore, that seed dormancy can be controlled in this Nicotiana model species by the manipulation of ABA levels.  相似文献   

11.
Dormancy release, ABA and pre-harvest sprouting   总被引:15,自引:0,他引:15  
Seed dormancy is an adaptive trait that enables the seeds of many species to remain quiescent until conditions become favorable for germination. Dormancy is normally initiated during seed maturation and maintained to seed maturity. In mature seeds, the loss of dormancy may be gradual (after-ripening) or can be terminated by chilling and other environmental triggers. Dormancy is an important trait for many important crop species: it inhibits pre-harvest spouting or vivipary, a widespread problem in many regions of the world. Too much dormancy, however, can lead to non-uniform germination in the field. Recent progress has been made in understanding the role of abscisic acid metabolism and dormancy release in both model plants and crop species. Advances in our understanding of the molecular mechanisms that are involved in dormancy, along with approaches using quantitative genetics, will provide new strategies through which the desired level of dormancy can be introduced into crop species.  相似文献   

12.
Seed vigour is a key trait essential for the production of sustainable and profitable crops. The genetic basis of variation in seed vigour has recently been determined in Brassica oleracea, but the relative importance of the interaction with parental environment is unknown. We produced seeds under a range of maternal environments, including global warming scenarios. Lines were compared that had the same genetic background, but different alleles (for high and low vigour) at the quantitative trait loci responsible for determining seed vigour by altering abscisic acid (ABA) content and sensitivity. We found a consistent effect of beneficial alleles across production environments; however, environmental stress during production also had a large impact that enhanced the genetic difference in seed performance, measured as germination speed, resistance to controlled deterioration and induction of secondary dormancy. Environmental interaction with allelic differences in key genes that determine ABA content and sensitivity develops a continuity in performance from rapid germination through to failure to complete germination, and increasing depths of seed dormancy. The genetic–environmental interaction revealed provides a robust mechanism of bet‐hedging to minimize environmental risk during subsequent germination, and this could have facilitated the rapid change in seed behaviour (reduced dormancy and rapid germination) observed during crop domestication.  相似文献   

13.
14.
15.
喀什霸王(Zygophyllum kaschgaricum)是生长于中国新疆南部荒漠环境的稀有种及二级保护植物。当前, 该物种在自然种群中呈分散式及片段化分布, 且种群密度低, 种群老龄化较严重。因此, 为了了解该物种种子萌发特性及其对荒漠环境的响应, 该文采用室内控制实验方法, 对该物种的自然坐果率、结籽率、种子吸水特性、种子休眠和萌发特性及对干旱胁迫的响应进行了比较研究。结果表明: 喀什霸王在自然种群中的坐果率及结籽率较低, 且种子的败育率较高。不同干藏时间种子的吸水速率间存在显著差异; 随着干藏时间的延长, 种子的吸水率逐步增强。刚成熟的种子在不同温度及光周期下均可萌发; 其中高温(10/20 ℃, 20/30 ℃)及黑暗条件下的萌发率比低温(10/5 ℃, 5/2 ℃)及光照条件下的萌发率高。不同干藏时间的种子在不同浓度赤霉素(GA3)下的萌发率均较高; 但低温储藏时间对该物种种子的打破休眠及萌发率没有促进作用。以上结果说明该物种存在非深度生理休眠; 而干藏时间、高温且黑暗及高浓度(50 mmoloL -1) GA3是打破休眠及促进种子萌发的最合适条件。高温条件下的干旱胁迫对喀什霸王种子萌发具有抑制作用; 春季和秋季降水量决定种子的萌发率。总之, 喀什霸王种子在物候上表现出的春秋季萌动及非深度生理休眠以提高幼苗存活力及保障种群稳定性, 是一种对新疆南部干旱及高温胁迫荒漠环境的适应策略。  相似文献   

16.
种子休眠与萌发的分子生物学的研究进展   总被引:22,自引:0,他引:22  
尹华军  刘庆 《植物学通报》2004,21(2):156-163
休眠与萌发是植物种子对环境变化的适应特征,受许多基因调控和环境因子的影响.利用数量遗传学方法(如QTL分析)和突变等手段已对休眠和萌发特性进行了深入的遗传学研究.近些年来,随着分子生物学的快速发展,种子休眠和萌发研究已经深入到分子水平.分子生物学技术的运用,特别是基因表达、基因组测序和以双向凝胶电泳及质谱分析为技术基础的蛋白质组学分析,已成为研究种子休眠和萌发的新工具和新方向.本文主要就利用分子生物学方法研究种子休眠与萌发的进展给予简要综述.  相似文献   

17.
生长素调控种子的休眠与萌发   总被引:2,自引:0,他引:2  
帅海威  孟永杰  罗晓峰  陈锋  戚颖  杨文钰  舒凯 《遗传》2016,38(4):314-322
植物种子的休眠与萌发,是植物生长发育过程中的关键阶段,也是生命科学领域的研究热点。种子从休眠向萌发的转换是极为复杂的生物学过程,由外界环境因子、体内激素含量及信号传导和若干关键基因协同调控。大量研究表明,植物激素脱落酸(Abscisic acid, ABA)和赤霉素(Gibberellin acid, GA)是调控种子休眠水平,决定种子从休眠转向萌发的主要内源因子。ABA与GA在含量和信号传导两个层次上的精确平衡,确保了植物种子能以休眠状态在逆境中存活,并在适宜的时间启动萌发程序。生长素(Auxin)是经典植物激素之一,其对向性生长和组织分化等生物学过程的调控已有大量研究。但最近有研究证实,生长素对种子休眠有正向调控作用,这表明生长素是继ABA之后的第二个促进种子休眠的植物激素。本文在回顾生长素的发现历程、阐释生长素体内合成途径及信号传导通路的基础上,重点综述了生长素通过与ABA的协同作用调控种子休眠的分子机制,并对未来的研究热点进行了讨论和展望。  相似文献   

18.
19.
种子休眠与萌发是截然不同而又紧密联系的两个生理过程,也是植物生命周期中的关键阶段,对自然状态下的植物物种繁殖与地理分布以及农业生产均具有重要意义,且两个过程受不同内源激素和环境信号之间的精确互作调控。大量研究表明,蛋白质磷酸化修饰作为一种重要的翻译后修饰方式,参与调控种子休眠与萌发以及植物逆境胁迫响应等过程并发挥重要作...  相似文献   

20.
Abstract

Desert plant species commonly use seed dormancy to prevent germination during unfavorable environmental conditions and thus increase the probability of seedling survival. Seed dormancy presents a challenge for restoration ecology, particularly in desert species for which our knowledge of dormancy regulation is limited. In the present study the effect of gibberellic acid (GA3) and potassium nitrate (KNO3) on seed dormancy release was investigated on eight Arabian desert species. Both treatments significantly enhanced the germination of most species tested. GA3 was more effective than KNO3 in enhancing germination percentage, reducing mean germination time and synchronizing the germination in most of the studied species. Light requirement during germination was species-specific, but in general the presence of light promoted germination more effectively when combined with KNO3 and GA3. The wide variation in dormancy and germination requirements among the tested species is indicative of distinct germination niches, which might assist their co-existence in similar habitat/environmental conditions. Seed pre-treatments that optimize germination in this habitat must therefore be assessed for individual species to improve the outcomes of ecological restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号