首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-step allele replacement mutagenesis procedure, using a conditionally replicating plasmid, was developed to allow the creation of targeted, marker-free mutations in Corynebacterium pseudotuberculosis. The relationship between homologous sequence length and recombination frequency was determined, and enhanced plasmid excision was observed due to the rolling-circle replication of the mutagenesis vector. Furthermore, an antibiotic enrichment procedure was applied to improve the recovery of mutants. Subsequently, as proof of concept, a marker-free, cp40-deficient mutant of C. pseudotuberculosis was constructed.  相似文献   

2.
The phospholipase D (PLD) gene from Corynebacterium pseudotuberculosis has been cloned, sequenced, and expressed in Escherichia coli. Analysis of DNA sequence data reveals a major open reading frame encoding a 31.4-kilodalton protein, a size consistent with that estimated for the PLD protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison of these data with the amino-terminal protein sequence indicates that the mature PLD protein is preceded by a 24-residue signal sequence. Expression of the PLD gene in E. coli is initiated from the corynebacterial promoter, and the resulting protein has sphingomyelinase activity. Primer extension mapping localized the 5' end of the PLD gene mRNA to a site 5 to 7 base pairs downstream of a region similar to the consensus sequence for E. coli promoters. Northern and Southern blot analyses suggest that the gene is transcribed from mRNA approximately 1.1 kilobases in length and that it is present in a single copy within the C. pseudotuberculosis genome.  相似文献   

3.
J A Haynes  J Tkalcevic  I T Nisbet 《Gene》1992,119(1):119-121
The gene pld, encoding the phospholipase D (PLD) of Corynebacterium pseudotuberculosis, was mutagenized using formic acid and then expressed in Escherichia coli. Mutagenesis was targeted at the coding region of pld, so as to produce only one or a limited number of point mutations. Transformants were screened for the enzymatic and immunological properties of their PLD products. One clone was found to produce a protein which was enzymatically inactive, but which was comparable to the wild-type PLD in size and antigenicity. The sequence of the pld mutant revealed a single base change. As a consequence, the codon for His20 was converted to Tyr. These results suggest that His20 forms part of the active site of the PLD molecule. If this protein is immunogenic in sheep, it would form the basis of a genetically inactivated vaccine.  相似文献   

4.
5.

Background

Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity.

Methodology and Findings

We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer.

Conclusions

These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.  相似文献   

6.
Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin (NAT)-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37 degrees C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37 degrees C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1, whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium-mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu+ transport into the secretory pathway is compromised, depriving laccase and other Cu(+)-dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium-mediated transformation is more efficient and generates exclusively stable insertion mutations.  相似文献   

7.
PCR-based assays were developed for the detection of plasmid- and chromosome-borne virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis, to investigate the distribution of these genes in isolates from various sources. The results of PCR genotyping, based on 5 virulence-associated genes of 140 strains of Y. enterocolitica, were compared to phenotypic tests, such as biotyping and serotyping, and to virulence plasmid-associated properties such as calcium-dependent growth at 37 degrees C and Congo red uptake. The specificity of the PCR results was validated by hybridization. Genotyping data correlated well with biotype data, and most biotypes resulted in (nearly) homogeneous genotypes for the chromosomal virulence genes (ystA, ystB, and ail); however, plasmid-borne genes (yadA and virF) were detected with variable efficiency, due to heterogeneity within the bacterial population for the presence of the virulence plasmid. Of the virulence genes, only ystB was present in biotype 1A; however, within this biotype, pathogenic and apathogenic isolates could not be distinguished based on the detection of virulence genes. Forty Y. pseudotuberculosis isolates were tested by PCR for the presence of inv, yadA, and lcrF. All isolates were inv positive, and 88% of the isolates contained the virulence plasmid genes yadA and lcrF. In conclusion, this study shows that genotyping of Yersinia spp., based on both chromosome- and plasmid-borne virulence genes, is feasible and informative and can provide a rapid and reliable genotypic characterization of field isolates.  相似文献   

8.
Abstract Corynebacterium pseudotuberculosis is an intracellular bacterial pathogen causing a chronic abscessing disease in sheep and goats called caseous lymphadenitis. We are developing this bacterial species as a live vector system to deliver vaccine antigens to the animal immune system. Foreign genes expressed in bacterial hosts can be unstable so we undertook to delete the C. pseudotuberculosis chromosomal recA gene to determine whether a recA background would reduce the frequency of recombination in cloned DNA. Homologous DNA recombination within an isogenic recA C. pseudotuberculosis was 10–12-fold lower than that in the recA + parental strain. Importantly, the recA mutation had no detectable affect upon the virulence of C. pseudotuberculosis in a mouse model. Taken together these results suggest that a recA background may be useful in the further development of C. pseudotuberculosis as a vaccine vector.  相似文献   

9.
The reporter transposon-based system TnFuZ was used to identify exported proteins of the animal pathogen Corynebacterium pseudotuberculosis. Thirty-four out of 1,500 mutants had detectable alkaline phosphatase (PhoZ) activity. This activity was from 21 C. pseudotuberculosis loci that code for fimbrial and transport subunits and for hypothetical and unknown-function proteins.  相似文献   

10.
11.
12.
Mycobacterial catalases have been suggested as acting as virulence factors by protecting intracellular mycobacteria from reactive oxidative metabolites produced by host phagocytes. Mycobacterium intracellulare , like many other mycobacteria, produces two proteins with catalase activity: a heat-stable catalase (KatE) and an inducible, heat-labile catalase peroxidase (KatG). The M. intracellulare katG gene was cloned, and a plasmid derivative with a 4 bp insertion in the katG coding sequence was constructed and used for site-directed mutagenesis of M. intracellulare 1403 (ATCC 35761). The resulting katG mutant was highly resistant to isoniazid (INH), showed an increased sensitivity to H2O2 and had lost peroxidase and heat-sensitive catalase activity but retained heat-stable catalase activity. The plasmid carrying the katG frameshift allele was also used for mutagenesis of the mouse virulent M. intracellulare isolate D673. After intravenous injection into BALB/c mice, D673 and the isogenic katG mutant showed the same growth kinetics in the spleen, liver and lungs of the infected mice. Our results demonstrate that the KatG catalase peroxidase mediates resistance to H2O2 and susceptibility to INH but is not an essential virulence factor for the survival and growth of M. intracellulare in the mouse.  相似文献   

13.
14.
15.
16.
Dermatophytes cause the majority of superficial mycoses in humans and animals. However, little is known about the pathogenicity of this specialized group of filamentous fungi, for which molecular research has been limited thus far. During experimental infection of guinea pigs by the human pathogenic dermatophyte Arthroderma benhamiae, we recently detected the activation of the fungal gene encoding malate synthase AcuE, a key enzyme of the glyoxylate cycle. By the establishment of the first genetic system for A. benhamiae, specific ΔacuE mutants were constructed in a wild-type strain and, in addition, in a derivative in which we inactivated the nonhomologous end-joining pathway by deletion of the A. benhamiae KU70 gene. The absence of AbenKU70 resulted in an increased frequency of the targeted insertion of linear DNA by homologous recombination, without notably altering the monitored in vitro growth abilities of the fungus or its virulence in a guinea pig infection model. Phenotypic analyses of ΔacuE mutants and complemented strains depicted that malate synthase is required for the growth of A. benhamiae on lipids, major constituents of the skin. However, mutant analysis did not reveal a pathogenic role of the A. benhamiae enzyme in guinea pig dermatophytosis or during epidermal invasion of the fungus in an in vitro model of reconstituted human epidermis. The presented efficient system for targeted genetic manipulation in A. benhamiae, paired with the analyzed infection models, will advance the functional characterization of putative virulence determinants in medically important dermatophytes.  相似文献   

17.
Gene targeting in the mouse is a powerful tool to study mammalian gene function. The possibility to efficiently introduce somatic mutations in a given gene, at a chosen time and/or in a given cell type will further improve such studies, and will facilitate the generation of animal models for human diseases. To create targeted somatic mutations in the epidermis, we established transgenic mice expressing the bacteriophage P1 Cre recombinase or the tamoxifen-dependent Cre-ER(T2) recombinase under the control of the human keratin 14 (K14) promoter. We show that LoxP flanked (floxed) DNA segments were efficiently excised in epidermal keratinocytes of K14-Cre transgenic mice. Furthermore, Tamoxifen administration to adult K14-Cre-ER(T2) mice efficiently induced recombination in the basal keratinocytes, whereas no background recombination was detected in the absence of ligand treatment. These two transgenic lines should be very useful to analyse the functional role of a number of genes expressed in keratinocytes.  相似文献   

18.
Diphtheria toxin (DT) is a potent toxin produced by the so-called diphtheria group which includes Corynebacterium diphtheriae (C. diphtheriae), Corynebacterium ulcerans (C. ulcerans), and Corynebacterium pseudotuberculosis (C. pseudotuberculosis). The present investigation is aimed to study in detail the production of DT by C. pseudotuberculosis. Twenty isolates were obtained from sheep diseased with caseous lymphadenitis (CLA) and twenty-six isolates were obtained from 26 buffaloes diseased with oedematous skin disease (OSD). All isolates were identified by standard microbiological and DT production was assayed serologically by modified Elek test and immunoblotting. All sheep isolates were nitrate negative, failed to hydrolyze starch and could not produce DT, while all buffalo isolates (biotype II) revealed positive results and a specific band of 62 kDa, specific to DT, was resulted in all concentrated cell fractions (CF), but was absent from non-toxigenic biotype I isolates. At the same time, another band of 31 kDa specific to the PLD gene was obtained with all isolates of biotype I and II. Moreover, all isolates showed positive synergistic hemolytic activity and antagonistic hemolysis with β-hemolytic Staphylococci. The obtained results also indicated that C. pseudotuberculosis could be classified into two strains; non-toxigenic biotype I strain, which failed to produce DT as well as being negative to nitrate and starch hydrolysis, and toxigenic biotype II strain, which can reduce nitrate, hydrolyze starch as well as produce DT.  相似文献   

19.
Mycothiol (MSH), a functional analogue of glutathione (GSH) that is found exclusively in actinomycetes, reacts with electrophiles and toxins to form MSH-toxin conjugates. Mycothiol S-conjugate amidase (Mca) then catalyzes the hydrolysis of an amide bond in the S conjugates, producing a mercapturic acid of the toxin, which is excreted from the bacterium, and glucosaminyl inositol, which is recycled back to MSH. In this study, we have generated and characterized an allelic exchange mutant of the mca gene of Mycobacterium smegmatis. The mca mutant accumulates the S conjugates of the thiol-specific alkylating agent monobromobimane and the antibiotic rifamycin S. Introduction of M. tuberculosis mca epichromosomally or introduction of M. smegmatis mca integratively resulted in complementation of Mca activity and reduced levels of S conjugates. The mutation in mca renders the mutant strain more susceptible to electrophilic toxins, such as N-ethylmalemide, iodoacetamide, and chlorodinitrobenzene, and to several oxidants, such as menadione and plumbagin. Additionally we have shown that the mca mutant is also more susceptible to the antituberculous antibiotic streptomycin. Mutants disrupted in genes belonging to MSH biosynthesis are also more susceptible to streptomycin, providing further evidence that Mca detoxifies streptomycin in the mycobacterial cell in an MSH-dependent manner.  相似文献   

20.
One important feature of Yersinia pseudotuberculosis that enables resistance against the host immune defence is delivery of the antiphagocytic effectors YopH and YopE into phagocytic cells. The tyrosine phosphatase YopH influences integrin signalling, and YopE impairs cytoskeletal dynamics by inactivating Rho GTPases. Here, we report the impact of these effectors on internalization by dendritic cells (DCs), which internalize antigens to orchestrate host immune responses. We found that this pathogen resists internalization by DCs via YopE. YopH that is important for blocking phagocytosis by macrophages and neutrophils and which is also present inside the DCs does not contribute to the resistance. However, the YopH targets Fyb and p130Cas show higher expression levels in macrophages than in DCs. Furthermore, live cell microscopy revealed that the cells internalize Y. pseudotuberculosis in different ways: the macrophages utilize a locally restricted receptor-mediated zipper mechanism, whereas DCs utilize macropinocytosis involving constitutive ruffling that randomly catches bacteria into membrane folds. We conclude that YopH impacts early phagocytic signalling from the integrin receptor to which the bacterium binds and that this tight receptor-mediated stimulation is absent in DC macropinocytosis. Inactivation of cytoskeletal dynamics by YopE affects ruffling activity and hence also internalization. The different modes of internalization can be coupled to the major functions of these respective cell types: elimination by phagocytosis and antigen sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号