首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Through labeling with the sodium salt of the photolabile bile salt derivative (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-[3 beta-3H]cholan-24-oyl)- 2-aminoethanesulfonic acid, a bile salt-binding polypeptide with an apparent molecular weight of 100,000 was identified in isolated canalicular but not basolateral (sinusoidal) rat liver plasma membranes. This labeled polypeptide was isolated from octyl glucoside-solubilized canalicular membranes by DEAE-cellulose and subsequent wheat germ lectin Sepharose chromatography. The purified protein still contained covalently incorporated radioactive bile salt derivative and exhibited a single band with an apparent molecular weight of 100,000 on sodium dodecyl sulfate-gels. Antibodies were raised in rabbits and their monospecificity toward this canalicular polypeptide demonstrated by immunoblot analysis. No cross-reactivity was found with basolateral membrane proteins. The antibodies inhibited taurocholate uptake into isolated canalicular but not basolateral membrane vesicles. In addition, the antibodies also decreased efflux of taurocholate from canalicular vesicles. If the canalicular bile salt-binding polypeptide was immunoprecipitated from Triton X-100-solubilized canalicular membranes and subsequently deglycosylated with trifluoromethanesulfonic acid, the apparent molecular weight was decreased from 100,000 to 48,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). These studies confirm previous results in intact liver tissue and strongly indicate that a canalicular specific glycoprotein with an apparent molecular weight of 100,000 is directly involved in canalicular excretion of bile salts.  相似文献   

2.
Photoaffinity labeling of small intestinal brush-border membrane vesicles with photolabile bile salt derivatives was performed to identify bile salt-binding polypeptides in these membranes. The derivatives used in this study were the sodium salts of 7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid, 3 beta-azido-7 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid, their respective taurine conjugates, and (11 xi-azido-12-oxo-3 alpha, 7 alpha-dihydroxy-5 beta-cholan-24-oyl)-2-aminoethanesulfonic acid. With ileal brush-border membrane vesicles, photoaffinity labeling resulted in the identification of 5 polypeptides with apparent molecular weights of 125,000, 99,000, 83,000, 67,000, and 43,000. The extent of labeling depended on the photolabile derivative employed. In jejunal brush-border membrane vesicles, polypeptides with apparent molecular weights of 125,000, 94,000, 83,000, 67,000, and 43,000 were labeled. The results indicate that the binding polypeptides involved in bile salt transport in ileal brush-border membrane vesicles are 1) similar with one exception to those concerned with bile salt transport in jejunal brush-border membranes, and 2) markedly different from those previously shown to be concerned with bile salt transport in plasma membranes of hepatocytes.  相似文献   

3.
The uptake of a photolabile taurocholate derivative, (7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oyl)-2-aminoethanesulfonate, 7,7-azo-TC, into rat renal brush-border membrane vesicles was stimulated by Na+ and inhibited by taurocholate indicating an interaction with the Na+/bile salt cotransport system. Irradiation of membrane vesicles in the presence of 7,7-azo-TC inhibited Na+-dependent taurocholate uptake irreversibly. Photoaffinity labeling with [3H]7,7-azo-TC resulted in a predominant incorporation of radioactivity into a polypeptide with apparent molecular weight of 99,000. These results suggest that the proteins involved in Na+/bile salt cotransport are similar in renal and ileal brush-border membranes, but differ from those in hepatocytes.  相似文献   

4.
New carbene-generating photolabile bile salt derivatives, 3,3-azo-7 alpha,12 alpha-dihydroxy-5 beta [7 beta-3H]cholan-24-oic acid and (3,3-azo-7 alpha,12 alpha-dihydroxy-5 beta [7 beta-3H]cholan-24-oyl)-2- aminoethanesulfonic acid were synthesized with high specific radioactivity. These 3-diazirine-derivatives could be activated to the corresponding carbenes by irradiation with ultraviolet light at 350 nm with a half-life time of 2 min. The 3-diazirine derivatives behaved in enterohepatic circulation like the natural bile salts. The uptake of [3H]taurocholate into isolated hepatocytes was competitively inhibited by (3,3-azo-7 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oyl)-2- aminoethanesulfonic acid indicating that the 3,3-azo-derivative of taurocholate shares the hepatic transport systems for natural bile salts. It was demonstrated that the radioactively labeled 3-diazirine bile salt derivatives are useful probes for photoaffinity labeling of bile salt binding proteins especially in intact cells and tissues.  相似文献   

5.
Direct photoaffinity labeling of leukotriene binding sites   总被引:1,自引:0,他引:1  
Due to their conjugated double bonds the leukotrienes themselves are photolabile compounds and may therefore be used directly for photoaffinity labeling of leukotriene binding sites. Cryofixation eliminates unspecific labeling taking place in solution by photoisomers and photodegradation products of leukotrienes. After fixation of receptor ligand interactions by shock-freezing of the samples, irradiation-induced highly reactive excited states and/or intermediates can form covalent bonds with the respective binding site in the frozen state. After cryofixation of a solution of albumin incubated with [3H8]leukotriene E4, irradiation at 300 nm resulted in time-dependent incorporation of radioactivity into the protein. Photoaffinity labeling of rat as well as of human blood serum with [3H8]leukotriene E4 after cryofixation revealed that only one polypeptide with an Mr of 67,000 was labeled. This polypeptide was identified as albumin. Photoaffinity labeling of rat liver membrane subfractions enriched with sinusoidal membranes resulted in the labeling of a polypeptide with an apparent Mr of 48,000, whereas no polypeptide was predominantly labeled in the subfraction enriched with canalicular membranes. Photoaffinity labeling of isolated hepatocytes disclosed different leukotriene E4 binding polypeptides. In the particulate fraction of hepatocytes a polypeptide with an apparent Mr of 48,000 was labeled predominantly, whereas in the soluble fraction several polypeptides were labeled to a similar extent. One of these, with an apparent Mr of 25,000, was identified as subunit 1 of glutathione transferases by immunoprecipitation. The method of direct photoaffinity labeling in the frozen state after cryofixation using leukotrienes as photoactivatable compounds, as exemplified by leukotriene E4, may be most useful for the identification and characterization of various leukotriene binding sites, including receptors, leukotriene-metabolizing enzymes, and transport systems.  相似文献   

6.
Direct photoaffinity labeling of liver plasma membrane subfractions enriched in sinusoidal and canalicular membranes using [35S]adenosine 5'-O-(thiotriphosphate) ([35S]ATP gamma S) allows the identification of ATP-binding proteins in these domains. Comparative photoaffinity labeling with [35S]ATP gamma S and with the photolabile bile salt derivative (7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-[3 beta-3H]-cholan-24-oyl-2'- aminoethanesulfonate followed by immunoprecipitation with a monoclonal antibody (Be 9.2) revealed the identity of the ATP-binding and the bile salt-binding canalicular membrane glycoprotein with the apparent Mr of 110,000 (gp110). The isoelectric point of this glycoprotein was 3.7. Transport of bile salt was studied in vesicles enriched in canalicular and sinusoidal liver membranes. Incubation of canalicular membrane vesicles with [3H] taurocholate in the presence of ATP resulted in an uptake of the bile salt into the vesicles which was sensitive to vanadate. ATP-dependent taurocholate transport was also observed in membrane vesicles from mutant rats deficient in the ATP-dependent transport of cysteinyl leukotrienes and related amphiphilic anions. Substrates of the P-glycoprotein (gp170), such as verapamil and doxorubicin, did not interfere with the ATP-dependent transport of taurocholate. Reconstitution of purified gp110 into liposomes resulted in an ATP-dependent uptake of [3H]taurocholate. These results demonstrate that gp110 functions as carrier in the ATP-dependent transport of bile salts from the hepatocyte into bile. This export carrier is distinct from hitherto characterized ATP-dependent transport systems.  相似文献   

7.
Interaction of unconjugated and taurine-conjugated NBD-amino-dihydroxy-5 beta-cholan-24-oic acids bearing the fluorophor in the 3 alpha, 3 beta, 7 alpha, 7 beta, 12 alpha, or 12 beta position with albumin results in a small hypsochromic shift of the emission maximum and an increase in quantum yield, suggesting binding by hydrophobic interactions. The different unconjugated fluorescent bile salt derivatives are metabolized by intact rat liver in different ways. The unconjugated 3 beta-NBD-amino derivative is completely transformed to its taurine conjugate and secreted as such, whereas the 3 alpha-NBD-amino derivative is completely transformed to a polar fluorescent compound not identical with its taurine conjugate. The unconjugated 7 alpha- and 7 beta-NBD-amino derivatives are only partially conjugated with taurine and mainly secreted in unmetabolized form. The unconjugated 12 alpha- and 12 beta-NBD-amino derivatives are not at all transformed to their taurine conjugates, but are partially metabolized to unidentified compounds. They are predominantly secreted as the unmetabolized compounds. In contrast to the unconjugated derivatives, all taurine-conjugated fluorescent bile salt derivatives are secreted into bile unmetabolized. With the exception of the 3 alpha-compound, all synthesized taurine-conjugated fluorescent derivatives interfere with the secretion of cholyltaurine. Differential photoaffinity labeling studies using (7,7-azo-3 alpha,12 alpha- dihydroxy-5 beta-cholan-24-oyl)-2'-[2'-3H(N)]aminoethanesulfonate as a photolabile derivative revealed that in liver cells all fluorescent bile salt derivatives interact with the same polypeptides as the physiological bile salts. The hepatobiliary transport of taurine-conjugated NBD-amino bile salt derivatives is, due to hydrophobic interactions, accompanied by an increase in fluorescence intensity which is favorable for the study of biological bile salt transport by fluorescence microscopy.  相似文献   

8.
A Mr = 110,000 glycoprotein, GP 110, was partially purified using wheat germ agglutinin-Sepharose affinity chromatography from a bile canalicular-enriched membrane fraction denoted N2u of rat liver. This fraction was subjected to preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the Mr = 110,000 polypeptide was excised and used as an immunogen in rabbits. The antisera were found to specifically recognize a Mr = 110,000 polypeptide, named GP 110, in the N2u membrane fraction. In isolated hepatocytes, GP 110 was readily accessible to cell surface iodination catalyzed by lactoperoxidase at 4 degrees C and was judged by immunoprecipitation studies to contain about 2% of total radioactivity incorporated into externally oriented proteins of the cell. Immunoprecipitated GP 110 was shown by two-dimensional polyacrylamide gel electrophoresis to migrate with an approximate pI of 4.9. Indirect immunofluorescence on frozen liver sections demonstrated that GP 110 was primarily localized in the bile canaliculus. In corroborative studies employing subcellular fractionation, it was found that GP 110 was enriched nearly 19-fold in P2, a plasma membrane fraction primarily derived from the sinusoidal domain, and 44-fold in N2u. In contrast, only low levels of GP 110 were present in endoplasmic reticulum, mitochondrial, cytosolic, and nuclear-enriched fractions of liver. The physiological function of GP 110 is as yet unknown; antisera to it did not immunoprecipitate other known bile canalicular proteins of similar molecular weights. GP 110 was found to be extensively glycosylated relative to other known membrane proteins; approximately 33% of the apparent molecular weight appear to be carbohydrate. In agreement, limited removal of N-linked carbohydrate chains indicated that there are approximately eight chains/GP 110 polypeptide. Neuraminidase treatment of GP 110 resulted in a desialylated Mr = 85,000 polypeptide suggesting that the majority of carbohydrate chains on GP 110 are of the complex type.  相似文献   

9.
1. Liver plasma membranes originating from the sinusoidal, lateral and canalicular surface domains of hepatocytes were covalently labelled with sulpho-N-hydroxysuccinamide-biotin. After solubilization in Triton X-114, treatment with a phosphatidylinositol-specific phospholipase C (PI-PLC), two-phase partitioning and 125I-streptavidin labelling of the proteins resolved by PAGE, six major polypeptides (molecular masses 110, 85, 70, 55, 38 and 35 kDa) were shown to be anchored in bile canalicular membrane vesicles by a glycosyl-phosphatidylinositol (G-PI) 'tail'. 2. Permeabilized 'early' and 'late' endocytic vesicles isolated from liver were also examined. Two polypeptides (110 and 35 kDa) were shown to be anchored by a G-PI tail in 'late' endocytic vesicles. 3. Analysis of marker enzymes in bile-canalicular vesicles treated with PI-PLC showed that 5'-nucleotidase and alkaline phosphatase, but not leucine aminopeptidase and ecto-Ca2(+)-ATPase activities were released from the membrane. A low release and recovery of alkaline phosphodiesterase activity was noted. The cleavage from the membrane of 5'-nucleotidase as a 70 kDa polypeptide was confirmed by Western blotting using an antibody to this enzyme. 4. Antibodies raised to proteins released from bile-canalicular vesicles by PI-PLC treatment, and purified by partitioning in aqueous and Triton X-114 phases, localized to the bile canaliculi in thin liver sections. Antibodies to proteins not hydrolysed by this treatment stained by immunofluorescence the sinusoidal and canalicular surface regions of hepatocytes. 5. Antibodies generated to proteins cleaved by PI-PLC treatment of canalicular vesicles were shown to identify, by Western blotting, a major 110 kDa polypeptide in these vesicles. Two polypeptides (55 and 38 kDa) were detected in MDCK and HepG-2 cultured cells. 6. Since two of the six G-PI-anchored proteins targeted to the bile-canalicular plasma membrane were also detected in 'late' endocytic vesicles, the results suggest that a junction where exocytic and endocytic traffic routes meet occurs in a 'late' endocytic compartment.  相似文献   

10.
The taurocholate transport system in normal and transformed hepatocytes has been characterized using transport kinetics and photoaffinity labeling procedures. A photoreactive diazirine derivative of taurocholate, (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oyl)-2-amino [ 1,2-3H ]ethanesulfonic acid (7-ADTC), which has been shown to be a substrate for the bile acid carrier system, was photolyzed in the presence of intact hepatocytes, hepatoma tissue culture (HTC) cells, and plasma membranes derived from the hepatocyte sinusoidal surface. Irradiation of membranes in the presence of 7-ADTC resulted in the incorporation of the photoprobe into two proteins with Mr = 68,000 and 54,000. The specificity of labeling was confirmed by the significant inhibition of labeling observed when photolysis was carried out in the presence of taurocholate. The 68,000-Da protein was easily extracted with water and was shown to exhibit electrophoretic properties identical with rat serum albumin. The 54,000-Da protein required Triton X-100 for solubilization, indicating a strong association with the plasma membrane. Labeling of intact hepatocytes also resulted in specific labeling of the 54,000-Da protein. In contrast to hepatocytes, HTC cells derived from Morris hepatoma 7288C as well as H4-II-E cells derived from Reuber hepatoma H-35 exhibited a total loss of mediated bile acid uptake. Photolysis of 7-ADTC in the presence of HTC cells did not result in the labeling of any proteins, a result consistent with the loss of transport activity, and further supporting the specificity of the labeling reaction. The anion transport inhibitor N-(4-azido-2-nitrophenyl)-2-aminoethyl-[ 35S ]sulfonate, which has been shown to be a substrate for the bile acid carrier system also labeled the 54,000-Da plasma membrane protein when photolyzed in the presence of intact hepatocytes. These results suggest that the 54,000-Da protein is a component of the hepatocyte bile acid transport system and that the activity of this system is greatly reduced in several hepatoma cell lines.  相似文献   

11.
The hepatic transport of the immunosuppressive Cyclosporin A (CyA) was studied using liposomal phospholipid membranes, freshly isolated rat hepatocytes and bile canalicular plasma membrane vesicles from rat liver. The Na(+)-dependent, saturable uptake of the bile acid 3H-taurocholate into isolated rat liver cells was apparently competitively inhibited by CyA. However, the uptake of CyA into the cells was neither saturable, nor temperature-dependent nor Na(+)-dependent, nor could it be inhibited by bile salts or CyA-derivatives, indicating passive diffusion. In steady state depolarization fluorescence studies, CyA caused a concentration-dependent decrease of anisotropy, indicating a membrane fluidizing effect. Ion flux experiments demonstrated that CyA dramatically increases the permeability of Na+ and Ca2+ across phospholipid membranes in a dose- and time-dependent manner, suggesting a iontophoretic activity that might have a direct impact on cellular ion homeostasis and regulation of bile acid uptake. Photoaffinity labeling with a [3H]-labeled photolabile CyA-derivative resulted in the predominant incorporation of radioactivity into a membrane polypeptide with an apparent molecular weight of 160,000 and a minor labeling of polypeptides with molecular weights of 85,000-90,000. In contrast, use of a photolabile bile acid resulted in the labeling of a membrane polypeptide with an apparent molecular weight of 110,000, representing the bile canalicular bile acid carrier. The photoaffinity labeling as well as CyA transport by canalicular membrane vesicles were inhibited by CyA and the p-glycoprotein substrates daunomycin and PSC-833, but not by taurocholate, indicating that CyA is excreted by p-glycoprotein. CyA uptake by bile canalicular membrane vesicles was ATP-dependent and could not be inhibited by taurocholate. CyA caused a decrease in the maximum amount of bile salt accumulated by the vesicles with time. However, initial rates of [3H]-taurocholate uptake within the first 2.5 min remained unchanged at increasing CyA concentrations. In summary, the data indicate that CyA does not directly interact with the hepatic bile acid transport systems. Its cholestatic action may rather be the result of alterations in membrane fluidity, intracellular effects and an interaction with p-glycoprotein.  相似文献   

12.
BACKGROUND: The relevance of discrete localization of hepatobiliary transporters in specific membrane microdomains is not well known. AIM: To determine whether the Na+/taurocholate cotransporting polypeptide (Ntcp), the main hepatic sinusoidal bile salt transporter, is localized in specific membrane microdomains. METHODS: Presence of Ntcp in membrane rafts obtained from mouse liver was studied by immunoblotting and immunofluorescence. HEK-293 cells stably transfected with rat Ntcp were used for in vitro studies. Expression, localization and function of Ntcp in these cells were assessed by immunoblotting, immunofluorescence and biotinylation studies and Na+ -dependent taurocholate uptake assays, respectively. The effect of cholesterol depletion/repletion assays on Ntcp function was also investigated. RESULTS: Ntcp localized primarily to membrane rafts in in vivo studies and localized partially in membrane rafts in transfected HEK-293 cells. In these cells, membrane cholesterol depletion resulted in a shift of Ntcp localization into non-membrane rafts, which correlated with a 2.5-fold increase in taurocholate transport. Cholesterol repletion shifted back part of Ntcp into membrane rafts, and normalized taurocholate transport to values similar to control cells. CONCLUSION: Ntcp localizes in membrane rafts and its localization and function are regulated by membrane cholesterol content. This may serve as a novel regulatory mechanism of bile salt transport in liver.  相似文献   

13.
The biosynthesis of pig small intestinal lactase-phlorizin hydrolase (EC 3.2.1.23-62) was studied by labelling of organ cultured mucosal explants with [35S]methionine. The earliest detactable form of the enzyme was an intracellular, membrane-bound polypeptide of Mr 225 000, sensitive to endo H as judged by its increased electrophoretic mobility (Mr 210 000 after treatment). The labelling of this form decreased during a chase of 120 min and instead two polypeptides of Mr 245 000 and 160 000 occurred, which both barely had their electrophoretic mobility changed by treatment with endo H. The Mr 160 000 polypeptide is of the same size as the mature lactase-phlorizin hydrolase and was the only form expressed in the microvillar membrane. Together, these data are indicative of an intracellular proteolytic cleavage during transport. The presence of leupeptin during labelling prevented the appearance of the Mr 160 000 form but not that of the Mr 245 000 polypeptide, suggesting that the proteolytic cleavage takes place after trimming and complex glycosylation. The proteolytic cleavage was not essential for the transport since the precursor was expressed in the microvillar membrane in the presence of leupeptin.  相似文献   

14.
The liver is the major organ which eliminates leukotriene C4 (LTC4) and other cysteinyl leukotrienes from the blood circulation into bile. Transport of LTC4 was studied using inside-out vesicles enriched in canalicular and sinusoidal membranes from rat liver. The incubation of canalicular membrane vesicles with [3H]LTC4 in the presence of ATP resulted in an uptake of LTC4 into vesicles. The initial rate of ATP-stimulated LTC4 uptake was about 40-fold higher in canalicular than in sinusoidal membrane vesicles. When liver plasma membrane vesicles were incubated in the absence of ATP, an apparent transient uptake of LTC4 was observed which was temperature-dependent and not affected by the osmolarity. This indicates that LTC4 was bound to proteins on the surface of plasma membrane vesicles. Two proteins with relative molecular weights of 17,000 and 25,000 were detected by direct photoaffinity labeling as major LTC4-binding proteins. One protein (Mr 25,000) was ascribed to subunit 1 (Ya) of glutathione S-transferase which was associated with the membrane. LTD4, LTE4, N-acetyl-LTE4, and omega-carboxy-N-acetyl-LTE4 were also transported into liver plasma membrane vesicles in an ATP-dependent manner with initial rates relative to LTC4 (1.0) of 0.46, 0.11, 0.35, and 0.22, respectively. Mutual competition between the cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione for uptake indicated that they are transported by a common carrier. Apparent Km values of the transport system for LTC4, LTD4, and N-acetyl-LTE4 were 0.25, 1.5, and 5.2 microM, respectively. The ATP-dependent transport of LTC4 into vesicles was not inhibited by doxorubicin, daunorubicin, or verapamil, or by the monoclonal antibody C219, suggesting that the transport system differs from P-glycoprotein. Liver plasma membrane vesicles prepared from mutant rats deficient in the hepatobiliary excretion of cysteinyl leukotrienes lacked the ATP-dependent transport of cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione. These results demonstrate that the ATP-dependent carrier system is responsible for the transport of cysteinyl leukotrienes and glutathione S-conjugates from the hepatocytes into bile.  相似文献   

15.
The expression of four integral membrane glycoproteins was examined in detail utilizing monospecific antibodies during liver development. These included asialoglycoprotein receptor, a hepatocyte glycoprotein residing in the sinusoidal domain, and three bile canalicular glycoproteins, leucine aminopeptidase, dipeptidyl peptidase IV, and a Mr 110,000 glycoprotein denoted GP 110. It was observed that asialoglycoprotein receptor, GP 110, and dipeptidyl peptidase IV were present in low amounts in fetal liver and reached adult levels between 1 to 3 weeks. In contrast, leucine aminopeptidase was present in nearly adult amounts in 18-day-old fetal livers. These observations were qualitatively confirmed by indirect immunofluorescent staining of frozen thin liver sections obtained from fetal and adult rats. Further, in fetal livers it was found that leucine aminopeptidase was not localized to typical bile canalicular areas. Immunoprecipitation studies performed in the presence of proteolytic inhibitors using detergent-solubilized extracts of metabolically labeled liver minces revealed that GP 110 was present in low amounts as Mr 110,000 and Mr 105,000 polypeptides in 17-day fetal livers but by 21 days of gestation the larger polypeptide was the major synthesis product. Conversely, the apparent molecular weights of leucine aminopeptidase and dipeptidyl peptidase IV were not altered during development. Experiments determining relative rates of synthesis using excess amounts of antibodies showed that the concentrations of the three bile canalicular glycoproteins in liver during ontogeny reflect their rates of synthesis. These results underscore that plasma membrane constituents of the hepatocyte undergo dramatic changes in expression and localization as the liver changes its physiological role at birth.  相似文献   

16.
Summary Bile acid-binding polypeptides were examined using basolateral membrane vesicles and enterocytes isolated from rat ileum. The uptake of a photolabile taurocholate derivative, (7,7,-azo-3, 12-dihydroxy-5[3-3H]cholan-24-oyl)-2-aminoethanesulfonate, 7,7-azo-TC, in ileal vesicles preloaded with paraaminohippurate (PAH) was stimulated with respect to uptake in unpreloaded vesicles. The PAH-transstimulated uptake of 7,7-azo-TC was inhibited by taurocholate and vice versa. Irradiation of membrane vesicles in the presence of 7,7-azo-TC irreversibly inhibited PAH-transtimulated taurocholate uptake. Photoaffinity labeling of basolateral membrane vesicles directly with [3H] 7,7-azo-TC and separation of proteins by SDS-PAGE revealed incorporation of radioactivity into several polypeptides. Photoaffinity labeling of vesicles in the presence of taurocholate inhibited the labeling of 54,000 and 59,000 mol. wt. polypeptides. The efflux of taurocholate from ileal enterocytes wascis-inhibited by 7,7-azo-TC andtransstimulated by PAH. Irradiation of enterocytes in the presence of 7,7-azo-TC inhibited taurocholate efflux greater than the presence of 7.7-azo-TC in the dark. When enterocytes that were irradiated in the presence of [3H] 7,7-azo-TC were fractionated and the resultant basolateral membrane fraction was subjected to SDS-PAGE, incorporation of radioactivity into the 54,000 and 59,000 mol. wt. polypeptides was seen. In contrast, when the brush-border membrane fraction was subjected to SDS-PAGE, greatest incorporation of radioactivity was seen in the previously described 99,000 mol. wt. polypeptide. These studies suggest that 7,7-azo-TC shared transporters with natural bile acid and identified polypeptides that may be involved in bile acid and identified polypeptides that may be involved in bile acid transport across the basolateral membrane and differ from that seen in the brush-border membrane of the ileal epithelial cell.  相似文献   

17.
1. Rhnull human erythrocytes lack all of the antigens of the Rh and LW blood group systems and have abnormal shape and an increased osmotic fragility. In this paper two murine monoclonal antibodies raised against intact human erythrocytes were used to investigate further the abnormalities in these cells. BRIC 125 reacts weakly with Rhnull erythrocytes and BRIC 69 does not react at all. The results showed that BRIC 125 reacts with a component of Mr 47,000-52,000 which has a substantial content of N-glycans. In contrast, BRIC 69 reacted with a band of Mr 31,000 together with a very diffuse band of Mr 35,000-52,000. Treatment of BRIC 69 immunoprecipitates with endoglycosidase F/peptidyl-N-glycosidase F resulted in the loss of both BRIC 69 reactive components and the appearance of a new band of Mr similar to that of the Rh(D) polypeptide. 2. BRIC 125 had a broad reactivity with cells in peripheral blood, whereas the reactivity of BRIC 69 was confined to erythrocytes. BRIC 125, but not BRIC 69, reacted with human kidney tissue and bound to endothelium in peritubular capillaries, arteries and veins as well as the epithelial tissue of distal tubules. BRIC 125 stained haemopoietic cells, foetal hepatocytes and megakaryocytes in foetal liver and sinusoidal cells, hepatocytes and portal tracts in adult liver. In contrast, BRIC 69 reactivity was confined to haemopoietic cells in foetal liver. The BRIC 125 epitope has a wide tissue distribution, suggesting the occurrence of a related group of polypeptides which have a general functional role on cell surfaces. 3. Rhnull erythrocytes are deficient in at least four different membrane polypeptides.  相似文献   

18.
The uptake of a photolabile derivative of the orally effective cephalosporin cephalexin, N-(4-azidobenzoyl)cephalexin, was investigated in brush-border membrane vesicles. The compound was taken up into the intravesicular space and inhibited the active uptake of cephalexin in a concentration-dependent manner. Therefore, this probe interacts with the transport system shared by alpha-aminocephalosporins and dipeptides. Photoaffinity labeling of brush-border membrane vesicles from rat small intestine with N-(4-azido[3,5-3H]benzoyl) derivatives of the cephalosporin cephalexin and the dipeptide glycyl-L-proline resulted in the covalent incorporation of radioactivity into membrane polypeptides with apparent molecular weights of 127,000, 100,000, 94,000 and 86,000, the polypeptide of molecular weight 127,000 being predominantly labeled. The specificity of labeling was demonstrated by a decrease in the labeling of the polypeptide of apparent molecular weight 127,000 in the presence of beta-lactam antibiotics and dipeptides, whereas glucose, taurocholate or amino acids had no effect on the labeling pattern. These data demonstrate an interaction of cephalosporins and dipeptides with a common membrane protein of molecular weight 127,000, which could be a component of the intestinal transport system(s) responsible for the uptake of orally effective cephalosporins and dipeptides.  相似文献   

19.
1. RhD,c and E immune complexes isolated from 3H- and 125I-surface-radiolabelled and unlabelled intact human red cells were analysed by SDS/polyacrylamide-gel electrophoresis. 2. Apparent Mr values of 31,900 for RhD polypeptide and 33,100 for Rhc,E polypeptide were obtained under both reducing and non-reducing conditions. Glycosylation of RhD,c and E polypeptides was not detected. 3. RhD,c and E immune complexes also contain a glycoprotein component. RhD glycoprotein (apparent Mr 45,000-100,000) is distinct from Rhc,E glycoprotein(s) (apparent Mr 35,000-65,000). Rh (Rhesus) glycoprotein carbohydrate moieties are susceptible to endo-beta-galactosidase digestion and carry blood-group-ABH determinants. This suggests the presence of polylactosaminoglycan-type structures. 4. Rh glycoproteins are not present in Rh immune complexes as a result of non-specific adsorption of membrane glycoproteins during the membrane-solubilization phase of immune-complex isolation because RhD immune complexes isolated from a 1:1 (v/v) mixture of Acde/cde and OcDE/cDE red cells do not contain blood-group-A-active glycoprotein. 5. Blood-group-A immune complexes isolated from group-A red cells of the appropriate Rh phenotypes contain the 31,900- and 33,100-apparent-Mr Rh polypeptides. 6. It was concluded from the above evidence that non-covalent Rh-glycoprotein-Rh-polypeptide complexes exist in the native red-cell membrane. 7. The 31,900- and 33,100-apparent-Mr Rh polypeptides are absent from blood-group-A immune complexes isolated from regulator type Rhnull cells (donor A.L.), but are replaced by a 33,800-apparent-Mr Rhnull-specific polypeptide (Rhnull polypeptide). It is suggested that Rhnull polypeptide is an aberrant product of the Rh gene complex.  相似文献   

20.
1. Polypeptides of liver plasma membrane fractions enriched in three surface domains of hepatocytes, blood-sinusoidal, lateral and bile canalicular, were analysed by isoelectric focusing (IEF) and non-equilibrium pH gel electrophoresis (NEPHGE) across a wide pH range, followed by SDS/PAGE. The overall Coomassie Blue-stained polypeptide patterns in the fractions were different. lateral plasma membrane fractions contained a characteristically higher number of polypeptides focusing at the basic pH range, whereas few basic polypeptides were present in sinusoidal plasma membrane fractions. The glycoproteins in these plasma membrane fractions stained by a lectin overlay technique with radio-iodinated concanavalin A, wheat-germ agglutinin and a slug lectin, were also different. 2. The polypeptides and glycoproteins of 'early' and 'late' endosome fractions were also compared by two-dimensional electrophoresis. Their composition was shown by Coomassie Blue staining, lectin overlay staining and in membranes metabolically labelled with [35S]methionine to be generally similar. The glycoproteins of sinusoidal plasma membranes and early and late endosomes were generally similar, but major differences in polypeptides of molecular mass 20-50 kDa, pI 7.5-8.5, in plasma membranes and endosomes were demonstrated, with a specific population of basic (pI 8-9) low-molecular-mass polypeptides being present at highest levels in 'late' endosomal fractions (shown by Coomassie Blue staining). 3. Analysis of the distribution of three specific membrane glycoproteins identified by using immunoblotting techniques showed that the asialoglycoprotein and the divalent-cation-sensitive mannose 6-phosphate receptors were present in sinusoidal plasma membrane and in early and late endocytic fractions: they were not detected in canalicular plasma membrane fractions. In contrast, 5'-nucleotidase was detected in all fractions examined. The role of the endocytic compartment in regulating trafficking pathways between the plasma membrane domains of the hepatocyte is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号