首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the generation of antibodies against small hapten molecules, the hapten is cross-linked with some carrier protein to make it immunogenic. However, the formation of such conjugates is not always reproducible. This may lead to inconsistent hapten-protein stoichiometries, resulting in large variations in the generation of the desired antibodies. In the study described here the hapten (mercaptopropionic acid derivative of atrazine) was coupled to carrier protein at five different molar ratios. The hapten-protein conjugates prepared were characterized thoroughly by spectrophotometric absorption, fluorescence, matrix-assisted laser desorption ionization (MALDI), and gel electrophoresis methods, before being used for the immunization and assay purposes. Electrophoresis and fluorescence methods were very useful in detecting hapten-protein cross-linking while MALDI-MS and spectrophotometric detection provided qualitatively comparable hapten density. The production of specific antibodies was sought following the generation of appropriate hapten-protein conjugates. A high antibody titer with moderate antibody specificity was obtained with hapten density around 15 molecules per carrier protein. The study proved useful for monitoring the course of hapten-protein conjugation for the production of specific antibodies against small molecules.  相似文献   

2.
Two Zn-Pc-peptide conjugates bearing either a short linker or a long PEG-linker between the macrocycle and a bifunctional peptide containing the nucleoplasmin and HIV-1 Tat 48-60 sequences have been synthesized in order to increase the Pc cell-targeting ability and to evaluate the effect of the linker. The presence of the peptide chain increased the water solubility of the Pc macrocycle and, consequently, its fluorescence in aqueous solutions. The highest fluorescence quantum yields were observed at low pH (5.0) for both conjugates and were always higher for the conjugate bearing the short linker. Both conjugates were found to have low dark cytotoxicity toward human HEp2 cells (IC50 > 77 microM) but were highly phototoxic (IC50 < 2 microM at 1 J cm-2). The conjugate bearing the long PEG-linker accumulated the most within cells (26 times more than the unconjugated Zn-Pc), followed by the short linker conjugate (17 times more than the unconjugated Zn-Pc). Both conjugates were found to localized preferentially within the cell lysosomes.  相似文献   

3.
For a comparative study of immunological properties of protein-polymer conjugates, uricase was modified with (a) poly(N-vinylpyrrolidone) 6000 Da, (b) poly(N-acriloylmorpholine) 6000 Da, (c) branched monomethoxypoly(ethylene glycol) 10000 Da, and (d) linear monomethoxypoly(ethylene glycol) 5000 Da. Spectroscopic studies performed by UV, fluorescence, and circular dichroism did not show any relevant difference in protein conformation among the native and the conjugates. Immunological studies showed that both uricase antigenicity and immunogenicity were altered by polymer conjugation to an extent that depended upon the polymer composition; in particular, monomethoxypoly(ethylene glycol) 10000 Da remarkably reduced the protein antigenicity, while unexpectedly, the poly(N-vinylpyrrolidone) derivative presented higher antigenicity than the native protein. In Balb/c mice, the native protein elicited a rapid and intense immunoresponse whereas all the conjugates induced a lower production of anti-native uricase antibodies. The rank order of immunogenicity was native uricase > uricase-poly(N-vinylpyrrolidone) > or = uricase-poly(N-acriloylmorpholine) > uricase-monomethoxypoly(ethylene glycol) 5000 Da > uricase-monomethoxypoly(ethylene glycol) 10000 Da. The four conjugates also induced anti polymer immunoresponse. Anti poly(N-vinylpyrrolidone) and anti poly(N-acriloylmorpholine) antibodies were generated from the first immunization while low levels of anti polymer antibodies were found with both poly(ethylene glycol) conjugates only after the second immunization.  相似文献   

4.
Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were compared with spectrally similar protein conjugates of the Cy3, Cy5, Cy5.5, Cy7, DY-630, DY-635, DY-680, and Atto 565 dyes. As N-hydroxysuccinimidyl ester dyes, the Alexa Fluor 555 dye was similar to the Cy3 dye, and the Alexa Fluor 647 dye was similar to the Cy5 dye with respect to absorption maxima, emission maxima, Stokes shifts, and extinction coefficients. However, both Alexa Fluor dyes were significantly more resistant to photobleaching than were their Cy dye counterparts. Absorption spectra of protein conjugates prepared from these dyes showed prominent blue-shifted shoulder peaks for conjugates of the Cy dyes but only minor shoulder peaks for conjugates of the Alexa Fluor dyes. The anomalous peaks, previously observed for protein conjugates of the Cy5 dye, are presumably due to the formation of dye aggregates. Absorption of light by the dye aggregates does not result in fluorescence, thereby diminishing the fluorescence of the conjugates. The Alexa Fluor 555 and the Alexa Fluor 647 dyes in protein conjugates exhibited significantly less of this self-quenching, and therefore the protein conjugates of Alexa Fluor dyes were significantly more fluorescent than those of the Cy dyes, especially at high degrees of labeling. The results from our flow cytometry, immunocytochemistry, and immunohistochemistry experiments demonstrate that protein-conjugated, long-wavelength Alexa Fluor dyes have advantages compared to the Cy dyes and other long-wavelength dyes in typical fluorescence-based cell labeling applications.  相似文献   

5.
Fluorescence labeling of the target molecules using a small molecule-based probe is superior than a method using genetically expressed green fluorescence protein (GFP) in terms of convenience in its preparation and functionalization. Fluorophore-nitrilotriacetic acid (NTA) conjugates with several ester protecting groups were synthesized and evaluated for their cell membrane permeability by fluorescence microscopy analysis. One of the derivatives, acetoxymethyl (AM)-protected NTA conjugate is hydrolyzed, resulting in intracellular accumulation, thus providing localized fluorescence intensity in cells. This modification is expected as an effective method for converting a non-cell membrane permeable NTA-BODIPY conjugates to a cell membrane permeable derivatives.  相似文献   

6.
Moraxella catarrhalis outer membrane proteins, CD and ubiquitous surface protein A (UspA), were used as carriers for M. catarrhalis detoxified lipooligosaccharide (dLOS)-based conjugates. Our study was designed to investigate the feasibility of CD and UspA as protein carriers for dLOS-based conjugates and their possible synergic effects on protection from both anti-LOS and anti-CD or anti-UspA antibody responses. Female Balb/c mice were immunized subcutaneously three times with dLOS-CD or dLOS-UspA conjugate in Ribi adjuvant. Antisera elicited by the conjugates showed high titers of specific anti-LOS antibodies with complement-dependent bactericidal activity towards M. catarrhalis strain 25238. In a mouse aerosol challenge model, mice immunized with both conjugates showed a significant enhancement of the clearance of strain 25238 from lungs as compared with the control mice. Although both conjugates elicited reduced (relative to unconjugated CD or UspA) but significant levels of anti-CD or UspA antibodies, they did not show synergetic effects with anti-LOS antibodies on the bactericidal activity or the pulmonary bacterial clearance. Nevertheless, CD and UspA are safe and effective new carriers for dLOS-based or other potential carbohydrate-based conjugate vaccines to help thymus-independent carbohydrate antigens for production of anti-carbohydrate antibodies against target pathogens.  相似文献   

7.
New, highly amino-substituted dextran or aminodextran (hereafter denoted Amdex) of various sizes between about 20 and 1000 kDa molecular mass and degrees of amino-substitution between 7 and 40% were prepared and characterized by elemental analyses and polyacrylamide gel electrophoresis. These aminodextrans together with others commercially available were shown by static light scattering, viscosity, and refractive index measurements to adopt a globular structure in aqueous salt solutions. Antibody and fluorescent protein dye, phycoerythrin, or its tandems with cyanin 5. 1 and TEXAS RED, were covalently conjugated to the aminodextrans. The conjugates contained multiple dye molecules and were shown by dynamic light scattering and scanning electron microscopy to assume either globular structure or aggregates thereof. Streptavidin could be substituted for antibody to prepare streptavidin-aminodextran-PE conjugates, which were then used with biotinylated antibody to label subpopulations of white blood cells. The conjugates yielded up to 20-fold amplification of fluorescence intensity over direct antibody-dye conjugates in labeling white blood cells for flow cytometry.  相似文献   

8.
Monoclonal antibodies to aminoglycoside antibiotic kanamycin (KM) were raised as a result of mice complex immunization with glutaraldehyde conjugates BSA with KM, tobramycin (TM) and gentamicin. Using antibodies an indirect competitive enzyme-linked immunosorbent assay was developed. This method allows to determine antibiotic up to 1.2 ng/ml in water solutions, milk and eggs and up to 2.5 ng/ml in honey. The recovery rate from these products spiked with KM was 83, 84 and 96% respectively. The assay of KM based on homologous and heterologous solid-phase conjugates were estimated. The cross-reactivity with TM could vary from 7 to 54%. The same indexes for of amikacin were more constant and reached 7-8%. The other aminoglycosides showed no inhibitory activity.  相似文献   

9.
Zearalenone-6'-carboxymethyloxime was synthesized, and its conjugates with albumins and gelatin were prepared. Polyclonal rabbit antibodies against the conjugate with bovine serum albumin were shown to be highly specific to zearalenone and to have a lower cross-reactivity toward its structural analogues (alpha-zearalenol--28%, beta-zearalenol--6%, zearalanone--12%, and alpha-zearalanol--5%). The sensitivity of enzyme immunoassay using gelatin-based immobilized conjugates for determination of zearalenone in solutions was 1 ng/ml, and this allowed us to determine this substance in feed at a threshold concentration of 200 micrograms/kg.  相似文献   

10.
A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated protein was conjugated with glutathione, the conjugation ratio determined by acid hydrolysis, and amino acid analysis performed with quantification of carboxymethyl cysteine. Elution of conjugates from the resin by a salt gradient revealed considerable heterogeneity in the degree of derivatization, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings, and the ability to release conjugates from the solid phase under mild conditions.  相似文献   

11.
Protein conjugates of polysaccharides or their breakdown products are being used as improved "T-dependent" vaccines. We tried to define optimal characteristics of future conjugate vaccines by testing the immunogenicity of thirteen conjugates of alpha 1-6 dextran and chicken serum albumin in mice (BALB/c and CBA). All conjugates induced stronger antidextran antibody responses than the polysaccharide, and a fair proportion of these antibodies were IgG. However, there was a range of antigenicities. Consistently strong responses were obtained with conjugates that carried small dextran molecules (m.w. 1000 to 4000) coupled to the protein via the reducing end. Modification of such an "optimal" conjugate either by increasing the size of the saccharide to 40,000 Da, or by permitting multiple attachments of the saccharide molecule to the protein, reduced its antigenicity. Carbohydrate/protein ratios varying from 0.17 to 0.49 were associated with excellent antidextran responses.  相似文献   

12.
Recently we have initiated the use of synthetic polyelectrolytes to mimic the action of chaperones in living cells [Dainiak et al., Biochim. Biophys. Acta 1381 (1998) 279-285]. The next step in this direction is done by the synthesis of conjugates of poly(methacrylic acid) (PMAA) with antigen, denatured glyceraldehyde-3-phosphate dehydrogenase (dGAPDH), and with monoclonal antibodies specific for dGAPDH (but not for the native protein). The pH-dependent properties of the conjugates have been studied using turbidimetry and light scattering. The antibody-PMAA and dGAPDH-PMAA conjugates were shown to interact with free dGAPDH and antibodies respectively as well as with each other. Insoluble aggregates of dGAPDH with antibody-PMAA and of antibodies with dGAPDH-PMAA are formed in acidic media. The same situation occurs in the mixture of antibody-PMAA and dGAPDH-PMAA: precipitation takes place in acidic media, whereas soluble associates are formed in neutral solutions. The size of the soluble associates and the number of conjugates in the associate could be regulated by pH. The competition of free dGAPDH and dGAPDH-PMAA for binding with antibody-PMAA and the dynamic release of refolded GAPDH, with no affinity to antibody-PMAA, into solution could be used for simulating chaperone action.  相似文献   

13.
The A-chain of a plant toxin ricin has been coupled to poly- and monoclonal antibodies specific to the L-chains of human IgG. The inhibitory effect of the conjugates has been compared with the ability of the antibodies to bind to target cells. Cytotoxicity of the conjugates has been monitored following incorporation of 14C-leucine radioactivity into Burkitt lymphoma cells with surface Ig. The 50% inhibition of protein synthesis is observed 18 h after treatment of cells with immunotoxins, when the concentration of the conjugates with poly- and monoclonal antibodies is 1.2.10(-9) M and 0.7.10(-9) M, respectively. The data take into account that only part of the polyclonal antibodies molecules is able to react with target cells. The control conjugates containing either monoclonal antibodies that do not react with the lymphoma cells surface L-chains or nonimmune serum IgG proved to have no effect on target cells even at the level of 10(-7) M. The immunotoxins with poly- and monoclonal antibodies produce almost the same kinetics of protein synthesis inhibition, when incubated with lymphoma cells for 60 min. However, a 30 min treatment reveals a considerably higher cytotoxicity of the conjugate with monoclonal antibodies.  相似文献   

14.
The possibility of obtaining from any antibody a fluorescent conjugate which responds to the binding of the antigen by a variation of its fluorescence, would be of great interest in the analytical sciences and for the construction of protein chips. This possibility was explored with antibody mAbD1.3 directed against hen egg white lysozyme. Rules of design were developed to identify the residues of the antibody to which a fluorophore could be chemically coupled, after changing them to cysteine by mutagenesis. These rules were based on: the target residue belonging to a topological neighbourhood of the antigen in the structure of the complex between antibody and antigen; its absence of functional importance for the interaction with the antigen; and its solvent accessibility in the structure of the free antibody. Seventeen conjugates between the single-chain variable fragment scFv of mAbD1.3 and an environment-sensitive fluorophore were constructed. For six of the ten residues which fully satisfied the design rules, the relative variation of the fluorescence intensity between the free and bound states of the conjugate was comprised between 12 and 75% (in non-optimal buffer), and the affinity of the conjugate for lysozyme remained unchanged relative to the parental scFv. In contrast, such results were true for only one of the seven residues which failed to satisfy one of the rules and were used as controls. One of the conjugates was studied in more detail. Its fluorescence increased proportionally to the concentration of lysozyme in a nanomolar range, up to 90% in a defined buffer, and 40% in serum. This increase was specific for hen egg lysozyme and it was not observed with a closely related protein, turkey egg lysozyme. The residues which gave operational conjugates (six in V(L) and one in V(H)), were located in the immediate vicinity of residues which are functionally important, along the sequence of FvD1.3. The results suggest rules of design for constructing antigen-sensitive fluorescent conjugates from any antibody, in the absence of structural data.  相似文献   

15.
The multipin peptide synthesis technique has been used to map antigenic sites of proteins (1,2). Antibodies raised to the whole protein are screened on pin-synthesized overlapping octapeptides homologous with the protein of interest, and the peptides that bind antibodies clearly identify the epitopes. What is described in this study is a method using pin-synthesized peptides to generate specific antibodies to many peptides. Cleavable linkers have been developed (3) that, used together with the multipin peptide synthesis technique, allow the synthesis and cleavage of many thousands of peptides into aqueous solutions at physiological pH. This technique is useful for assays requiring peptides in solution, e.g., mapping of T-cell determinants. A technique has been developed for the cleavage of many peptides from pins and simultaneous coupling to immunogenic carriers (4). The conjugates produced are suitable for the generation of antipeptide antibodies. This procedure is illustrated using several 15 amino acid long peptides (15-mers), homologous with the sequence of a model antigen, myohemerythrin (MHr). The resulting antipeptide sera generated were tested by ELISA for titer and specificity on pinsynthesized peptides and β-amide peptides and the protein antigen coated to microtiter plates.  相似文献   

16.
The multipin peptide synthesis technique has been used to map antigenic sites of proteins (1,2). Antibodies raised to the whole protein are screened on pin-synthesized overlapping octapeptides homologous with the protein of interest, and the peptides that bind antibodies clearly identify the epitopes. What is described in this study is a method using pin-synthesized peptides to generate specific antibodies to many peptides. Cleavable linkers have been developed (3) that, used together with the multipin peptide synthesis technique, allow the synthesis and cleavage of many thousands of peptides into aqueous solutions at physiological pH. This technique is useful for assays requiring peptides in solution, e.g., mapping of T-cell determinants. A technique has been developed for the cleavage of many peptides from pins and simultaneous coupling to immunogenic carriers (4). The conjugates produced are suitable for the generation of antipeptide antibodies. This procedure is illustrated using several 15 amino acid long peptides (15-mers), homologous with the sequence of a model antigen, myohemerythrin (MHr). The resulting antipeptide sera generated were tested by ELISA for titer and specificity on pin-synthesized peptides and beta-amide peptides and the protein antigen coated to microtiter plates.  相似文献   

17.
Portions of a whole antiserum to Histoplasma capsulatum were reacted with amounts of fluorescein isothiocyanate (FITC) that ranged from 50 to 400 mug/mg of protein. Portions of the globulin from the same antiserum were reacted with amounts of FITC that ranged from 12.5 to 50 mug of FITC per mg of protein. The globulin conjugates (postlabeled globulins), the whole serum conjugates, and the globulins from the whole serum conjugates (prelabeled globulins) were compared with respect to their fluorescein-protein (F:P) ratios and fluorescent-antibody (FA) activities. The whole serum sample treated with 50 mug of FITC per mg of protein was least reactive in FA tests, and its globulin had the lowest F:P. All other conjugates had globulins with F:P ratios that were considered to be adequate for high FA activity. It was found, however, that the prelabeled globulins were considerably less reactive than the postlabeled globulins or the whole serum conjugates. A larger amount of brightly staining reagent per milliliter of original serum could be obtained from labeled whole serum than from postlabeled globulin. Lissamine-rhodamine conjugated to bovine serum albumin (LRBSA) was evaluated as a counterstain to be used in conjunction with FITC-labeled whole antisera. The counterstain was effective in masking nonspecific FITC fluorescence in Formalin-fixed tissues and in culture smears of fungi. Masking was incomplete in culture smears of a bacterium and in blood smears containing a protozoan.  相似文献   

18.
Anti-PEG antibodies have been reported to mediate the accelerated clearance of PEG-conjugated proteins and liposomes, all of which contain methoxyPEG (mPEG). The goal of this research was to assess the role of the methoxy group in the immune responses to mPEG conjugates and the potential advantages of replacing mPEG with hydroxyPEG (HO-PEG). Rabbits were immunized with mPEG, HO-PEG, or t-butoxyPEG (t-BuO-PEG) conjugates of human serum albumin, human interferon-α, or porcine uricase as adjuvant emulsions. Assay plates for enzyme-linked immunosorbent assays (ELISAs) were coated with mPEG, HO-PEG, or t-BuO-PEG conjugates of the non-cross-reacting protein, porcine superoxide dismutase (SOD). In sera from rabbits immunized with HO-PEG conjugates of interferon-α or uricase, the ratio of titers of anti-PEG antibodies detected on mPEG-SOD over HO-PEG-SOD ("relative titer") had a median of 1.1 (range 0.9-1.5). In contrast, sera from rabbits immunized with mPEG conjugates of three proteins had relative titers with a median of 3.0 (range 1.1-20). Analyses of sera from rabbits immunized with t-BuO-PEG-albumin showed that t-butoxy groups are more immunogenic than methoxy groups. Adding Tween 20 or Tween 80 to buffers used to wash the assay plates, as is often done in ELISAs, greatly reduced the sensitivity of detection of anti-PEG antibodies. Competitive ELISAs revealed that the affinities of antibodies raised against mPEG-uricase were c. 70 times higher for 10 kDa mPEG than for 10 kDa PEG diol and that anti-PEG antibodies raised against mPEG conjugates of three proteins had >1000 times higher affinities for albumin conjugates with c. 20 mPEGs than for analogous HO-PEG-albumin conjugates. Overall, these results are consistent with the hypothesis that antibodies with high affinity for methoxy groups contribute to the loss of efficacy of mPEG conjugates, especially if multiply-PEGylated. Using monofunctionally activated HO-PEG instead of mPEG in preparing conjugates for clinical use might decrease this undesirable effect.  相似文献   

19.
Monoclonal antibodies to the aminoglycoside antibiotic kanamycin (KM) were obtained as a result of the complex immunization of mice with glutaraldehyde conjugates of BSA with KM, tobramycin (TM), and gentamicin. With the use of these antibodies, an indirect competitive enzyme-linked immunosorbent assay was developed. This method allows for the determination of up to 1.2 ng/ml of an antibiotic in water solutions, milk, and eggs, and up to 2.5 ng/ml in honey. The recovery rate in these products spiked with KM was 83, 84, and 96%, respectively. The assays of KM based on homologous and heterologous solid-phase conjugates were estimated. Under these conditions the cross-reactivity with TM could vary from 7 to 54%. The same indexes for amikacin were more constant and reached 7–8%. The other aminoglycosides showed no inhibitory activity.  相似文献   

20.
Chitin is the second most abundant polysaccharide, present, e.g., in insect and arthropod exoskeletons and fungal cell walls. In some species or under specific conditions, chitin appears to be enzymatically de-N-acetylated to chitosan-e.g., when pathogenic fungi invade their host tissues. Here, the deacetylation of chitin is assumed to represent a pathogenicity mechanism protecting the fungus from the host's chitin-driven immune response. While highly specific chitin binding lectins are well known and easily available, this is not the case for chitosan-specific probes. This is partly due to the poor antigenicity of chitosan so that producing high-affinity, specific antibodies is difficult. Also, lectins with specificity to chitosan have been described but are not commercially available, and our attempts to reproduce the findings were not successful. We have, therefore, generated a fusion protein between a chitosanase inactivated by site-directed mutagenesis, the green fluorescent protein (GFP), and StrepII, as well as His(6) tags for purification and detection. The recombinant chitosan affinity protein (CAP) expressed in Escherichia coli was shown to specifically bind to chitosan, but not to chitin, and the affinity increased with decreasing degree of acetylation. In vitro, CAP detection was possible either based on GFP fluorescence or using Strep-Tactin conjugates or anti-His(5) antibodies. CAP fluorescence microscopy revealed binding to the chitosan exposing endophytic infection structures of the wheat stem rust fungus, but not the chitin exposing ectophytic infection structures, verifying its suitability for in situ chitosan staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号