首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Insect populations vary in the proportion of individuals exhibiting a particular ‘state’ (e.g., developmental stage, sex, egg load, or nutritional status). Because an insect's developmental state often determines both its size and its behavior, it is likely that this will also affect the probability of being sampled. We propose that a comprehensive approach to pest management must consider the interaction between the structure of a pest population (i.e., the relative number of individuals in each state) and any state‐dependent sampling bias. To illustrate the usefulness of this method we sampled populations of the western tarnished pest bug, Lygus hesperus Knight (Heteroptera: Miridae), in cotton fields. Our sampling technique utilized large cages to measure the absolute densities of each L. hesperus stage and adult sex within a population. This technique allowed us to document a wide range of absolute stage structures and sex ratios across 10 L. hesperus populations in California. Using a combination of cage samples and sweep net samples, we quantified the state‐dependent sampling bias by calculating the efficiency of sweep sampling as a function of L. hesperus developmental stage and sex. We found that the efficiency of sweep nets increased steadily with each successive developmental stage (i.e., nymphal instar) of L. hesperus. We also found that sweep nets are slightly more efficient in capturing male vs. female L. hesperus adults. Since other studies have documented that the stage and sex of L. hesperus can affect feeding impact on cotton flower buds, our results suggest that accurate predictions of Lygus damage will need to incorporate stage and sex‐dependent sampling biases.  相似文献   

2.
Unexplained variability in the relationship between the number of herbivores in a field and the amount of crop damage can arise if there is a large amount of variation among herbivore individuals in the amount of feeding damage each generates. In California, populations of the western tarnished plant bug, Lygus hesperus Knight (Heteroptera: Miridae), produce highly variable levels of damage to cotton plants (Gossypium hirsutum L.) (Malvaceae), even when found at low densities. Because L. hesperus populations are also highly variable in their overall stage structure, we hypothesize that differences in crop damage might result from varying impact by each L. hesperus stage on cotton flower buds (termed squares). Laboratory measurements of L. hesperus mouth‐parts and distance to anther sacs, a preferred feeding site, revealed that 1st?3rd instar L. hesperus nymphs will not be able to feed on anther sacs of larger squares (over 8 mm in length) but will be able to feed on squares that are most sensitive to L. hesperus damage (<7 mm). Because even the 1st instars can feed on the most sensitive ‘pinhead’ squares, size constraints do not rule out damaging effects from the youngest L. hesperus. Laboratory observations revealed that later developmental stages, and adults, spend more time feeding on cotton squares relative to 2nd and 3rd instars. In addition, a field experiment revealed no effect of 2nd instars on square retention (relative to control cages) but did reveal a significant decrease in square retention generated by adult L. hesperus (4th instar L. hesperus resulted in an intermediate level of square retention). In a final study we sampled L. hesperus stage structure and density across 38 cotton fields. Multiple regression revealed that the densities of 1st?3rd instars of L. hesperus are not correlated with anther sac damage or square retention. However, in 2 years 4th and 5th instars were positively correlated with anther sac damage and negatively correlated with square retention. In the a third year, adult L. hesperus showed correlations in the same direction, across fields and across sites within fields. Overall, these results suggest that the adults and the largest nymphs of L. hesperus (4th and 5th instars) are particularly damaging to cotton squares, with the 1st?3rd instars of L. hesperus causing little damage to plants.  相似文献   

3.
Landscape composition plays an important, but poorly understood, role in the population dynamics of agricultural pest species with broad host ranges including both crops and weeds. One such pest, the generalist plant bug Lygus hesperus Knight (Hemiptera: Miridae), is a key cotton pest that feeds on various hosts differing in quality in California's San Joaquin Valley (USA). We investigated the effects of 15 common crops and uncultivated agricultural land on L. hesperus populations, by correlating the densities of L. hesperus in focal cotton fields with the areas of the 16 crops in surrounding rings. Insect counts were provided by private pest‐control advisors, and spatial data were obtained from Kern County records. We first calculated Spearman's partial correlation coefficients on an annual basis for each crop separately, and then performed a meta‐analysis of these correlations across years to describe the overall effect of a particular crop on L. hesperus after the effects of the 15 other crops are removed. Consistent with studies conducted in other areas, L. hesperus density was positively correlated with safflower, and negatively with cotton. Lygus hesperus density was also correlated with several other crops that are often not considered in pest management, including grape, oat, and onion (positive correlations), and almond, pistachio, and potato (negative correlations). Lygus hesperus density was also found to be negatively correlated with alfalfa and positively correlated with uncultivated habitats, a relationship that receives mixed support in the literature. Several other crops tested were not significantly correlated with L. hesperus densities in focal cotton fields, suggesting a neutral role for them in L. hesperus dynamics. The improved understanding of the effects of a greater variety of crops on L. hesperus population dynamics will be useful in the design of agricultural landscapes for enhanced management of this important polyphagous pest.  相似文献   

4.
5.
Understanding the effect of cropping patterns on population dynamics, dispersal, and habitat selection of insect pests has been an unresolved challenge. Here, we studied the western tarnished plant bug, Lygus hesperus (Knight) (Heteroptera: Miridae), in cotton during early summer in central Arizona. We used a general approach based on global positioning system (GPS) and geographic information system (GIS) technologies combined with spatial statistics to assess the maximum distance at which forage and seed alfalfa, fallow fields with weeds, and cotton affect L. hesperus population density. Using a set of 50 cotton fields as focal fields, we found that forage and seed alfalfa as well as weeds acted as L. hesperus sources for these cotton fields. The source effect did not extend beyond 375, 500, and 1500 m for forage alfalfa, weeds, and seed alfalfa, respectively. Conversely, cotton fields acted as L. hesperus sinks, but this effect did not extend further than 750 m from the focal cotton fields. These findings suggest that specific spatial arrangements of these field types could reduce L. hesperus damage to cotton. The spatially explicit approach used here provides a direct evaluation of the effects of agroecosystem heterogeneity on pest population dynamics, dispersal, and habitat selection, which is a significant asset for the development and improvement of areawide pest management.  相似文献   

6.
A simplified but highly effective approach for the post‐mortem evaluation of predation on several targeted members of an arthropod assemblage that does not require the development of pest‐specific enzyme‐linked immunosorbent assay (ELISA) (e.g. pest‐specific monoclonal antibodies) or PCR assays (DNA primers) is described. Laboratory feeding studies were conducted to determine if predation events could be detected from predators that consumed prey marked with foreign protein. I determined that large and small rabbit immunoglobulin G (IgG)‐marked prey can be detected by a rabbit‐IgG‐specific ELISA in the guts of chewing and piercing–sucking type predators. I then conducted multifaceted inclusion and exclusion field cage studies to qualify the degree of interguild and intraguild predation occurring among a complex arthropod assemblage during four separate light phase treatments. The field cages contained an arthropod assemblage consisting of 11 or 12 species of predaceous arthropods and three pest species. The three pests introduced into the cages included third instar Trichoplusia ni marked with rabbit IgG, third instar Lygus hesperus marked with chicken IgG and Pectinophora gossypiella sentinel egg masses. The inclusion cages allowed foraging fire ants, Solenopis xyloni, to freely enter the cages while the exclusion cages contained barriers that prevented ant entry. The results obtained using the conventional inclusion/exclusion field cage methodology revealed that there was substantial interguild and intraguild predation occurring on the majority of the arthropods in the assemblage, particularly in those cages that included ants. I then precisely identified which predators in the assemblage were feeding on the three targeted pests by conducting three post‐mortem gut content analyses on each individual predator (1503 individuals) in the assemblage. Specifically, P. gossypiella egg predation events were detected using an established P. gossypiella‐egg‐specific ELISA, and third instar T. ni and L. hesperus predation events were detected using rabbit‐IgG‐specific and chicken‐IgG‐specific ELISAs, respectively. Generally, the gut ELISAs revealed that Collops vittatus, Spanagonicus albofasciatus and Geocoris punctipes readily preyed on P. gossypiella eggs; Nabis alternatus, Zelus renardii and spiders (primarily Misumenops celer) readily preyed on marked L. hesperus nymphs, and spiders, S. albofasciatus and N. alternatus readily preyed on T. ni larvae. Furthermore, the cage methods and the post‐mortem predator gut ELISAs revealed very few distinctive patterns of predation with regard to the light cycle the assemblage was exposed to.  相似文献   

7.
Abstract This study examined the diel activity pattern and the effect of diel activity pattern on predation rate and prey finding of Dicyphus hesperus Knight (Heteroptera: Miridae). To determine the diel activity pattern of D. hesperus, starved females were placed on tomato leaflets Lycopersicon esculentum Mill. (Solanaceae) under zero, low, or high light intensities at 02:00, 08:00, and 14:00 h, respectively, and the amount of time spent walking or resting during a 30‐min interval was recorded. Predation rates of D. hesperus females on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) egg patches were determined under either a L16:D8 (long day) or L8:D16 (short day) diel period. Egg patches were removed from D. hesperus females after either 8 or 16 h of dark or 16 or 8 h of light, and the number of eggs consumed was counted. Dicyphus hesperus females spent more time searching for prey at night than during the day. Females ate eggs at a higher rate during the night than during the day. Overall, D. hesperus females had higher predation rates when reared under a long day diel cycle compared with females reared under a short day diel cycle. More females reared at the L16:D8 diel cycle found the egg patch during the night than during the day. There was no difference in egg patch finding between night and day for females reared at L8:D16. Overall, L16:D8 reared females found more egg patches than females reared at L8:D16. Therefore, D. hesperus females are more active and find and consume prey at a higher rate at night than day.  相似文献   

8.
Mortality dynamics and population regulation in Bemisia tabaci   总被引:1,自引:0,他引:1  
Natural mortality is an important determinant of the population dynamics of a species, and an understanding of mortality forces should aid in the development of better management strategies for insect pests. An in situ, observational method was used to construct cohort‐based life tables for Bemisia tabaci (Gennadius) Biotype B (Homoptera: Aleyrodidae) over 14 generations on cotton in central Arizona, USA, from 1997 to 1999. In descending order, median marginal rates of mortality were highest for predation, dislodgment, unknown causes, egg inviability, and parasitism. The highest mortality occurred during the 4th nymphal stadium, and the median rate of immature survival over 14 generations was 6.6%. Predation during the 4th nymphal stadium was the primary key factor. Irreplaceable mortality was highest for predation and dislodgment, with the absence of these mortality factors leading to the greatest increases in estimated net reproduction. There was little evidence of direct or delayed density‐dependence for any mortality factor. Wind, rainfall, and predator densities were associated with dislodgment, and rates of predation were related to densities of Geocoris spp., Orius tristicolor (White), Chrysoperla carnea s.l. Stephens, and Lygus hesperus Knight. Simulations suggest that immigration and emigration play important roles in site‐specific dynamics by explaining departures from observed population trajectories based solely on endogenous reproduction and mortality. By a direct measurement of these mortality factors and indirect evidence of adult movement, we conclude that efficient pest management may be best accomplished by fostering greater mortality during the 4th stadium, largely through a conservation of predators and by managing immigrating adult populations at their sources.  相似文献   

9.
The functional response of a predator to the density of its prey is affected by several factors, including the prey's developmental stage. This study evaluated the functional response of Podisus nigrispinus (Dallas) (Hemiptera: Heteroptera: Pentatomidae) females to fourth instars and pupae of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae), an important pest of cotton (Gossypium hirsutum L., Malvaceae) in Brazil. The prey were exposed to the predator for 12 and 24 h, and in densities of 1, 6, 12, 18, 24, and 30 items per predator female. The predation data were subjected to polynomial regression logistic analysis to determine the type of functional response. Holling and Rogers' equations were used to estimate parameters such as attack rate and handling time. Podisus nigrispinus females showed functional response types II and III by preying on larvae and pupae, respectively. The attack rate and handling time did not differ between the 12 and 24 h exposure times. Predation rate was higher at higher larval and pupal densities; predation was highest at a density of 30 prey items per female, and it was similar at 18 and 24 prey per predator. Understanding the interaction of predators and their food resources helps to optimize biological control strategies. It also helps the decision‐making and the improvement of release techniques of P. nigrispinus in the field.  相似文献   

10.
Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California''s San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year''s crop on June densities of the pest Lygus hesperus and the effect of the prior year''s crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.  相似文献   

11.
Selection pressure on bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), by cotton, Gossypium hirsutum (L.) (Malvaceae), that produces one or more Bacillus thuringiensis Berliner (Bt) proteins is reduced by plantings of non‐Bt refuge cotton that produce non‐selected individuals. However, the contributions of non‐Bt, non‐cotton crop hosts to the overall effective refuge for H. zea on Bt cotton have not been estimated. A 2‐year, season‐long study was conducted in five US cotton‐producing states to assess the spatial and temporal population dynamics and host use of H. zea. Helicoverpa zea larval estimates in commercial crop fields demonstrated that non‐cotton crop hosts, such as maize, Zea mays L. (Poaceae), grain sorghum, Sorghum bicolor (L.) Moench (Poaceae), peanut, Arachis hypogaea L. (Fabaceae), and soybean, Glycine max (L.) Merrill (Fabaceae), collectively support much larger larval populations than cotton throughout the season. Larval populations were almost entirely restricted to maize in the middle part of the season (June and portions of July), and were observed in non‐cotton crop hosts more frequently and typically in larger numbers than in cotton during the period when production would be expected in cotton (July and August). Numbers of H. zea larvae produced in replicated strip trials containing various crop hosts paralleled production estimates from commercial fields. In contrast, the number of H. zea adults captured in pheromone traps at interfaces of fields of Bt cotton and various crop hosts rarely varied among interfaces, except in instances where maize was highly attractive. With the exception of this early season influence of maize, moth numbers were not related to local larval production. These data demonstrate that H. zea adults move extensively from their natal host origins. Therefore, non‐cotton crop hosts, and even relatively distant hosts, contribute significantly to effective refuge for H. zea on Bt cotton. The results presented here demonstrate that substantial natural refuge is present for Bt‐resistance management of H. zea throughout the mid‐South and Southeast portions of the US cotton belt.  相似文献   

12.
Lygus hesperus Knight (Hemiptera: Miridae) is a key pest of fruit and vegetable crops, forages, and cotton (Gossypium spp.) in the western United States. Accurate models describing relationships between temperature and L. hesperus development are critical to the study of seasonal L. hesperus population dynamics. Development of L. hesperus nymphs was assessed at nine constant temperatures from 10 to 37.8 degrees C. The relationships between temperature and development for each L. hesperus instar, and for the entire nymphal stage, were best described by six-parameter biophysical models indicating both low- and high-temperature inhibition of development. Development rates asymptotically approached zero with decreasing temperature in the lower thermal range, and decreased with increasing temperatures above 32.2 degrees C. Nymphs did not survive from egg hatch to adulthood at either 10 or 37.8 degrees C, and nymph mortality was > 90% at both 12.8 and 35.0 degrees C. The fifth instar exhibited the longest stadium, whereas the shortest stadia were associated with the second and third instars. Development rates of males and females did not differ, and the ratio of males to females was not different from 1:1 at any temperature. Our temperature-dependent development rate models for L. hesperus nymphs will facilitate control of insect physiological age in controlled laboratory experiments, and should be useful in planning and interpreting field studies on L. hesperus population dynamics.  相似文献   

13.
Host plants exhibiting insect resistance traits have long been known to influence within‐plant distributions of pests and their natural enemies. Sites and timing of egg deposition are particularly important for synchrony of predators and their prey in the field. Temporal and spatial distribution of eggs of the cotton bollworms [Heliothis virescens (F.) and Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)] and that of the predators Geocoris punctipes (Say) (Heteroptera: Geocoridae), Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae), and Micromus spec. (Neuroptera: Hemerobiidae) were determined during three cotton seasons, from 2002 to 2004, by collecting and examining plants throughout each season. Comparisons also were made between Bt and non‐Bt cotton to investigate possible changes in oviposition behavior on Bt cotton. The study was conducted in commercial fields with insecticide use to manage pests when economic thresholds were exceeded in both cotton types. Egg densities for predators and bollworms varied among years, but were similar on Bt and non‐Bt cottons. Oviposition of bollworms and G. punctipes correlated spatially within plants, with most eggs laid on structures in the top five nodes of cotton plants and on the three outermost leaves on lateral branches regardless of cotton type. Bollworm oviposition dynamics exhibited two peaks within the season (early July and early August). Eggs of all predators and bollworms collected from the field and incubated in the laboratory had high hatching rates throughout each season (74–100%). Temporal association of predator with bollworm oviposition showed a significant correlation with green lacewings, a delay of 10 days for big‐eyed bugs, and no correlation with brown lacewings. Furthermore, Bt cotton plants exerted no significant effect on temporal or spatial patterns of oviposition of bollworms or the predators, indicating no change in oviposition behavior of bollworm females within plant structures after almost one decade of widespread planting of Bt cotton.  相似文献   

14.
Farmers and private consultants execute a vast, decentralized data collection effort with each cropping cycle, as they gather pest density data to make real-time pest management decisions. Here we present a proof of concept for an ecoinformatics approach to pest management research, which attempts to harness these data to answer questions about pest-crop interactions. The impact of herbivory by Lygus hesperus on cotton is explored as a case study. Consultant-derived data satisfied a ‘positive control’ test for data quality by clearly resolving the expected negative relationship between L. hesperus density and retention of flower buds. The enhanced statistical power afforded by the large ecoinformatics dataset revealed an early-season window of crop sensitivity, during which L. hesperus densities as low as 1-2 per sample were associated with yield loss. In contrast, during the mid-season insecticide use by farmers was often unnecessary, as cotton compensated fully for moderate L. hesperus densities. Because the dataset emerged from the commercial production setting, it also revealed the limited degree to which farmers were willing to delay crop harvest to provide opportunities for compensatory fruiting. Observational approaches to pest management research have strengths and weaknesses that complement those of traditional, experimental approaches; combining these methods can contribute to enhanced agricultural productivity.  相似文献   

15.
Conventional prey‐specific gut content ELISA (enzyme‐linked immunosorbent assay) and PCR (polymerase chain reaction) assays are useful for identifying predators of insect pests in nature. However, these assays are prone to yielding certain types of food chain errors. For instance, it is possible that prey remains can pass through the food chain as the result of a secondary predator (hyperpredator) consuming a primary predator that had previously consumed the pest. If so, the pest‐specific assay will falsely identify the secondary predator as the organism providing the biological control services to the ecosystem. Recently, a generic gut content ELISA was designed to detect protein‐marked prey remains. That assay proved to be less costly, more versatile, and more reliable at detecting primary predation events than a prey‐specific PCR assay. This study examines the chances of obtaining a ‘false positive’ food chain error with the generic ELISA. Data revealed that the ELISA was 100% accurate at detecting protein‐marked Lygus hesperus Knight (Hemiptera: Miridae) remains in the guts of two (true) primary predators, Hippodamia convergens Guérin‐Méneville (Coleoptera: Coccinellidae) and Collops vittatus (Say) (Coleoptera: Melyridae). However, there was also a high frequency (70%) false positives associated with hyperpredators, Zelus renardii Kolenati (Hemiptera: Reduviidae), that consumed a primary predator that possessed protein‐marked L. hesperus in its gut. These findings serve to alert researchers that the generic ELISA, like the PCR assay, is susceptible to food chain errors.  相似文献   

16.
A new method for post-mortem quantification of predation on prey items marked with protein antigens is described. First, short-term protein marking retention tests were conducted on the targeted prey, immature Lygus hesperus Knight (Heteroptera: Miridae). Chicken IgG, rabbit IgG, or soy milk proteins were readily detectable by a suite of protein specific enzyme-linked immunosorbent assays (ELISA) on the L. hesperus. Then, predator gut content assays were conducted on chewing and piercing–sucking type predators that consumed a 3rd instar L. hesperus marked with rabbit IgG. The rabbit IgG gut content ELISA detected the marked prey in the vast majority of both types of predators for up to 24 h after feeding. Finally, field cage studies were conducted to quantify predation rates of the natural cotton predator assemblage on protein marked L. hesperus nymphs. Each 4th instar L. hesperus marked with rabbit IgG, chicken IgG, and soy milk was released into one of 360 field cages containing a cotton plant and the natural population of predators. After 7 h, each caged plant was pulled from the field, the number of predaceous arthropods in each cage were tallied, and each individual predator was assayed for the presence of marked prey by a suite of protein-specific ELISAs. A procedural error with the soy mark application negated the anti-soy ELISA data, but the anti-rabbit IgG and anti-chicken IgG ELISAs pinpointed exactly which predators preyed on the IgG marked nymphs. The protein-specific gut ELISAs revealed that various members of Araneae, Heteroptera, and Coleoptera were the most common predators of the marked prey items. In all, 74 predation events were recorded in the guts of the 556 predators encountered in the field cages. Of these 26, 23, and 14 marked individuals were eaten by various members of Araneae, Heteroptera, and Coleoptera, respectively. This study verifies that prey immunomarking is a simple, versatile, and effective method for quantifying predation rates on L. hesperus.  相似文献   

17.
An earlier study showed that two phytoseiid species, Euseius scutalis (Athias‐Henriot) and Typhlodromips swirskii (Athias‐Henriot) (Acari: Phytoseiidae), are capable of suppressing populations of Bemisia tabaci (Gennadius) (Hemiptera: Aleurodidae) on isolated cucumber plants supplied with Typha latifolia L. pollen. However, the predators did not exterminate their prey, and this may be caused by the existence of invulnerable B. tabaci stages. Little is known of the differential vulnerability of the immature B. tabaci stages. Here, we quantified their vulnerability by assessing the rate of predation on each of the immature stages when offered alone at a density high enough to allow for a maximal predation rate. All immature stages of B. tabaci were vulnerable to predation by each of the two predator species. However, the per capita predation rates, the oviposition rates of phytoseiids, as well as the percentage of predators feeding and the percentage ovipositing decreased with increasing stages of B. tabaci. Compared to that of eggs and 1st instars, the vulnerability of 2nd and later B. tabaci instars is an order of magnitude lower. To investigate how the presence of alternative food changes the rates of predation, we added pollen to a diet of 1st instars, one of the most vulnerable instars. This resulted in a decrease in the predation rate of E. scutalis, but not of T. swirskii, while the oviposition rate of both phytoseiid species remained equally high. The decreased predation of the 1st instars probably resulted from E. scutalis switching to pollen feeding.  相似文献   

18.
Lygus hesperus is an important pest of many crops grown in the Western US. In addition, other species of Lygus cause damage in other parts of the world. To date, no selective pesticide exists for the control of Lygus spp. and broad spectrum pesticides that also kill natural enemies may lead to secondary pests. Entomopathogenic fungi may offer an alternative to chemical pesticides. Isolates of Beauveria bassiana collected from San Joaquin Valley of California (SJV) L. hesperus populations were screened for their ability to grow at high temperatures and for their ability to infect and kill L. hesperus adults and nymphs under laboratory conditions. No isolate grew at 37 or 35 °C but most isolates were able to grow at 32 °C. In addition, one L. hesperus isolate was more efficacious at higher doses than the commercial isolate. Microsatellite markers were used to determine that selected isolates could be distinguished from other isolates. Preliminary information suggested 82 SJV isolates of B. bassiana were closely related to each other but distantly related to the commercial isolate.  相似文献   

19.
Aphid suppression by natural enemies in mulched cereals   总被引:2,自引:0,他引:2  
Large populations of natural enemies are the basis for natural pest control. Effects of mulch on predator–prey interactions in arable fields are poorly known, despite its potential to enhance ground‐dwelling predators and thereby reduce pest infestations. We studied the densities of predators and parasitoids, and their impact on cereal aphids in the presence and absence of mulch. Released populations of the bird cherry aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae), and two naturally occurring aphid species, were monitored under experimentally reduced densities of: (i) ground‐dwelling predators, (ii) flying predators and parasitoids, and (iii) with straw mulch. The three treatments were applied in a 2 × 2 × 2 factorial design in a field of spring wheat (Triticum aestivum L.). The exclusion of ground‐dwelling predators increased aphid populations by 55% in June and 40% in July, respectively. Mulched plots had 25% lower aphid densities in June. This was presumably due to enhanced densities of spiders (Araneida) in mulched plots. The exclusion of flying predators and parasitoids led to 94% higher aphid populations in late July (109 vs. 56 individuals per 100 shoots), irrespective of mulch or ground predator manipulation. This was attributed to the larvae of gall midges Aphidoletes cf. aphidimyza (Rondani) (Diptera: Cecidomyiidae) and hoverflies (Diptera: Syrphidae). The results indicate that a scarcity of predators and a bare soil surface renders crops more susceptible to arthropod pests. Farming schemes should aim at enhancing both ground‐dwelling and flying predators for elevated levels of natural pest control.  相似文献   

20.
The effects of water stress (produced by water deprivation and prey feeding) on plant feeding were investigated in the omnivorous predator Dicyphus hesperus Knight (Hemiptera: Miridae). The objective was to determine if prey feeding aggravated water deficits and thus increased plant feeding. We measured plant feeding in a factorial experiment where female D. hesperus were prepared for experiments by providing or withholding water and/or prey for 24 h. We then evaluated the amount of plant feeding on Nicotiana tabacum seedlings by the direct observation of insects at three different densities of the prey, Ephestia kuehniella eggs. The amount of plant feeding, as measured by frequency of plant feeding bouts and time spent plant feeding during observation, was significantly greater for water‐deprived individuals than for those that had been provided with water. Individuals that had been provided with prey fed on plants at a significantly higher frequency than prey‐deprived individuals at two of the prey densities used in the experiment. These results support the hypothesis that plant feeding in zoophytophagous Hemiptera facilitates prey feeding by providing water that is essential for predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号