首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Recently a thrombin receptor with a unique mechanism of activation was cloned from a megakaryocyte-like cell line (Vu et al., Cell 64:1057-1068, 1991). Thrombin cleaves a portion of this receptor creating a new N-terminus that acts as a "tethered-ligand" to activate the receptor. A thrombin receptor activating peptide (SFLLRNPNDKYEPF) homologous to the new N-terminus was shown to activate platelets. We synthesized this peptide and demonstrated that it desensitized platelets to activation by low concentrations of alpha-thrombin but not gamma-thrombin. We also synthesized a thrombin exosite inhibitor (BMS 180742) that inhibited platelet aggregation induced by low, but not high, concentrations of alpha-thrombin. In contrast, a thrombin active site inhibitor, N alpha-(2-naphthylsulfonyl-glycyl)-D,L-amidinophenylalanylpiperi dide, competitively inhibited thrombin-induced platelet aggregation. We conclude that thrombin-induced platelet activation is mediated by at least two pathways: one activated by low concentrations of alpha-thrombin and blocked by a thrombin exosite inhibitor that appears to be coupled to the "tethered-ligand" thrombin receptor, and another that is stimulated by higher concentrations of alpha-thrombin and by gamma-thrombin and does not require the thrombin exosite for activation. Both pathways are blocked by a thrombin active site inhibitor.  相似文献   

3.
Thrombin binds to platelets and induces platelet activation, but the relationship of binding to activation is not clear. To better define this relationship, we have analyzed parameters of binding and activation by alpha-thrombin and by three analogous proteases that activate platelets somewhat differently. The proteases were nitro-alpha-thrombin, a derivative with nitrated tyrosine, gamma-thrombin, a product of partial proteolysis of alpha-thrombin, and trypsin, a homologous protease. Nitro-alpha-thrombin and native alpha-thrombin activated platelets similarly, whereas gamma-thrombin and trypsin activated to a slightly lesser extent than alpha-thrombin and only after a distinctive delay. alpha-Thrombin and nitro-alpha-thrombin bound to platelets to about the same extent, but only alpha-thrombin showed evidence of saturable binding. Hirudin, a thrombin inhibitor, blocked both platelet activation and saturable binding by alpha-thrombin. With nitro-alpha-thrombin, hirudin blocked platelet activation, but it had no effect on binding. gamma-Thrombin and trypsin bound less than alpha-thrombin and with no evidence of saturable binding. There were identical relationships between the total amount bound and the extent of platelet activation for the four proteases (some show no saturable binding) but distinct differences in the relationships of total amount bound and the rate of activation; similar rates of activation required the binding of three to five times more gamma-thrombin or trypsin than alpha-thrombin. That is, without saturable binding, activation was slower. These data thus show a correlation between total amount bound and extent of activation but no correlation between amount saturably bound and the extent of platelet activation. Conversely, the rate of activation is more closely correlated with saturable binding than with total binding. We conclude that high-affinity saturable binding is not essential for thrombin-induced platelet activation but that it may accelerate the reaction.  相似文献   

4.
Treatment of cultured fibroblasts with thrombin results in the stimulation of cell division and lipid metabolism. Proteolytically active alpha-thrombin rapidly stimulates (a) release of arachidonic acid, (b) generation of inositol phosphates, and (c) increase in cellular diacylglycerol levels. Pretreatment of the fibroblasts with chymotrypsin before alpha-thrombin prevented the first two responses, (a) and (b), and reduced response c. Treatment of fibroblasts with gamma-thrombin, a proteolytic derivative of alpha-thrombin, produced a response indistinguishable from the alpha-thrombin treatment when preceded by chymotrypsin. These data support a model, similar to one for platelets [McGowan, E. B., & Detwiler, T. C. (1986) J. Biol. Chem. 261, 739-746], that fibroblasts possess two coupling mechanisms for the stimulation of lipid metabolism by thrombin. Similar to platelets, one mechanism, R1, mediates the stimulated release of arachidonic acid and is capable of activating Ni, a GTP-binding protein. R1 is inactivated by chymotrypsin and does not respond to gamma-thrombin. The other mechanism, R2, responds to gamma-thrombin and is not activated by chymotrypsin. In contrast to the mechanisms proposed for platelets, we demonstrate that the phospholipase C responsible for the hydrolysis of phosphoinositides is not activated by R2 but is activated via R1. Importantly, stimulation of either mechanism results in the elevation of cellular diacylglycerol. This indicates that the stimulated elevation of diacylglycerol, or those events dependent upon the elevation of diacylglycerol, is not a reliable indicator for establishing the hydrolysis of phosphoinositides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Thrombin-induced platelet aggregation is accompanied by cleavage of aggregin, a surface membrane protein (Mr = 100 kDa), and is mediated by the intracellular activation of calpain. We now find that agents that increase intracellular levels of platelet cAMP by stimulating adenylate cyclase, also inhibit thrombin binding and platelet activation by destabilizing thrombin receptors on the platelet surface. Iloprost (a stable analog of PGI2) and forskolin each completely inhibited platelet aggregation by 2 nM thrombin and markedly decreased cleavage of aggregin. Thrombin inactivated by D-phenylalanine-L-prolyl-L-arginine chloromethyl ketone (PPACK-thrombin) binds to the highest affinity site for thrombin on the platelet surface, but thrombin modified by N alpha-tosyl-L-lysine chloromethylketone (TLCK-thrombin) does not. We now demonstrate that preincubation of platelets with PPACK-thrombin blocked platelet aggregation and cleavage of aggregin induced by 2 nM thrombin. In contrast, TLCK-thrombin neither blocked platelet aggregation nor the cleavage of aggregin. These results show that a) platelet aggregation and cleavage of aggregin by thrombin (2nm) involves the occupancy of high affinity alpha-thrombin receptors on the platelet surface, and b) stimulators of adenylate cyclase which increase cAMP, inhibit thrombin-induced platelet aggregation and cleavage of aggregin by mechanisms which include inhibiting the binding of thrombin to its receptors.  相似文献   

6.
Stimulation of human platelets with thrombin is accompanied by activation of both phospholipases C and A2. These have been considered to be sequential events, with phospholipase A2 activation resulting from the prior hydrolysis of inositol phospholipids and mobilization of intracellular Ca2+ stores. However, our and other laboratories have recently questioned this proposal, and we now present further evidence that these enzymes may be activated by separate mechanisms during thrombin stimulation. Alpha-thrombin induced the rapid hydrolysis of inositol phospholipids, and formation of inositol trisphosphate and phosphatidic acid. This was paralleled by mobilization of Ca2+ from internal stores. These responses were blocked by about 50% by prostacyclin. In contrast, the liberation of arachidonic acid induced by alpha-thrombin was totally inhibited by prostacyclin. The less-effective agonists, platelet activating factor (PAF) and gamma-thrombin also both stimulated phospholipase C, but whereas PAF evoked a rapid and transient response, that of gamma-thrombin was delayed and more sustained. The abilities of these agonists to induce the release of Ca2+ stores closely paralleled phospholipase C activation. However, the maximal intracellular Ca2+ concentrations achieved by these two agents were the same. Despite this, gamma-thrombin and not PAF, was able to release a small amount of arachidonic acid. When alpha-thrombin stimulation of platelets was preceded by epinephrine, there was a potentiation of phospholipase C activation, Ca2+ mobilization and aggregation. The same was true for gamma-thrombin and PAF. However, unlike alpha-thrombin, the gamma-thrombin-stimulated arachidonic acid release was not potentiated by epinephrine, but rather somewhat reduced. These results suggested that phospholipase C and phospholipase A2 were separable events in activated platelets. The mechanism by which alpha-thrombin stimulated phospholipase A2 did not appear to be through dissociation of the inhibitory GTP-binding protein, Gi, since gamma-thrombin decreased the pertussis toxin-induced ADP-ribosylation of the 41 kDa protein as much as did alpha-thrombin, but was a much less effective agent than alpha-thrombin at inducing arachidonic acid liberation.  相似文献   

7.
It was found that human platelets possess a high sensitivity towards alpha-thrombin (Km = 2 nM). Modified thrombin forms (beta/gamma-thrombin) with an impaired recognition site of high molecular weight substrates and DIP-alpha-thrombin and trypsin are incapable of inducing platelet aggregation when taken at concentrations corresponding to effective concentrations of alpha-thrombin. Beta/gamma-Thrombin and trypsin, unlike DIP-alpha-thrombin, cause platelet aggregation at concentrations of 100-200 nM. Studies on the modulating effects of modified thrombin forms, alpha-thrombin and trypsin, on platelet aggregation induced by alpha-thrombin revealed that beta/gamma-thrombin, alpha-thrombin and trypsin at concentrations causing no cell aggregation potentiate the platelet response after 2 min incubation and inhibit platelet aggregation upon prolonged (15 min) incubation. However, DIP-alpha-thrombin, irrespective of the incubation time (up to 30 min) increased the sensitivity of platelets to alpha-thrombin-induced aggregation. The activating effect of DIP-alpha-thrombin is characterized by an equilibrium constant (KA) of 17 nM. The experimental data confirm the hypothesis that the necessary prerequisite for an adequate physiological response of platelets to alpha-thrombin is the maintenance in the thrombin molecule of an intact active center and a recognition site for high molecular weight substrates. The specificity of thrombin as a potent platelet aggregation inducer is determined by the recognition site for high molecular weight substrates.  相似文献   

8.
To assess the possibility that hydrolysis of the platelet surface thrombin substrate, glycoprotein V, is a necessary step in thrombin-induced platelet activation, thrombin-catalyzed hydrolysis of glycoprotein V was correlated with thrombin-induced platelet activation. Hydrolysis of tritium-labeled glycoprotein V on washed human platelets was measured by the appearance of a labeled supernatant fragment, and platelet activation was measured as secretion of ATP. Hydrolysis of glycoprotein V was linear with respect to both thrombin concentration and time of incubation. The extent of platelet activation was correlated with the rate of hydrolysis but not with the amount hydrolyzed. Maximum platelet activation could be obtained with thrombin treatments resulting in hydrolysis of as little as 4% of glycoprotein V per min. Glycoprotein V was partially removed from platelets by pretreatment with either platelet calcium-dependent protease or chymotrypsin. The rate of thrombin-catalyzed hydrolysis of the remaining glycoprotein V from these pretreated platelets was as little as 1.5% the rate from control platelets, but there was no impairment of the extent of platelet activation. Thus, these protease-pretreated platelets compared with control platelets showed a different correlation of glycoprotein V hydrolysis with platelet activation. Glycoprotein V was also partially removed by pretreatment of prostacyclin-inhibited platelets with thrombin. After removal of thrombin and prostacyclin, these platelets were desensitized to subsequent activation by thrombin. Incubation of desensitized platelets with nonsaturating levels of thrombin led to less than 25% of the activation seen with control platelets but to a slightly greater hydrolysis of glycoprotein V. Thus, the desensitization to thrombin was not due to loss of ability of the activating thrombin to hydrolyze glycoprotein V. These results do not exclude a role for glycoprotein V as a component of the platelet thrombin receptor, but they indicate that there is no simple relationship between thrombin-induced hydrolysis of glycoprotein V and platelet activation.  相似文献   

9.
Stimulation of washed human platelets with alpha-thrombin was accompanied by aggregation, formation of inositol phosphates and phosphatidic acid, liberation of arachidonic acid, mobilization of intracellular Ca2+ stores, and influx of Ca2+ from the extracellular medium. Each of these responses was potentiated by a short pretreatment with epinephrine, although alone this agent was ineffective. A prolonged (5 min) stimulation with alpha-thrombin desensitized both phospholipase C and Ca2+ mobilization to a further thrombin challenge. Epinephrine added following thrombin desensitization restored both the ability of thrombin to release Ca2+ stores and stimulate inositol phospholipid hydrolysis. Resensitization was mediated by alpha 2-adrenergic receptors and lasted about 3 min, after which the Ca2+ levels returned again to basal levels. Pretreatment of platelets with phorbol dibutyrate at concentrations which specifically activate protein kinase C increased the rate of desensitization of the thrombin-induced release of Ca2+ stores and abolished the ability of epinephrine to restore the thrombin response. The protein kinase C inhibitor, staurosporine, blocked the inhibitory effect of phorbol ester and also reduced the rate of desensitization of thrombin and subsequent epinephrine action. These results suggest that thrombin activation of protein kinase C phosphorylates and inactivates a signaling protein which is common to both thrombin and alpha 2-adrenergic receptors. This protein is involved in thrombin stimulation of phospholipase C but is not directly stimulatory since epinephrine alone does not activate this enzyme. We searched for a known second messenger protein common to both thrombin and alpha 2-adrenergic receptors which was phosphorylated in intact platelets by protein kinase C in parallel with thrombin-induced desensitization. The alpha subunit of the inhibitory GTP-binding protein, Gi, was the only candidate which fulfilled all of these criteria as shown by immunoprecipitation. Therefore, we suggest that alpha i maintains the thrombin receptor in a state which can couple to phospholipase C when activated with thrombin. This permissive state of alpha i is blocked by phosphorylation by thrombin-activated protein kinase C.  相似文献   

10.
To determine the role of thrombin high-affinity receptor occupancy and enzymic activity in thrombin initiation of cell proliferation, we have utilized thrombin derivatives which separate these functions. We previously showed that enzymically active gamma-thrombin stimulates ion fluxes without binding to high-affinity sites, whereas proteolytically inhibited DIP-alpha-thrombin which binds to high-affinity receptors does not. Since neither derivative initiates DNA synthesis by itself, this suggested that two separate sequences of events might be necessary for a complete initiation signal. We now report that the combination of DIP-alpha-thrombin and gamma-thrombin initiate DNA synthesis and cell proliferation to levels approaching the maximal initiation by native alpha-thrombin. This combinatory effect is dose-dependent for both gamma-thrombin and DIP-alpha-thrombin in the same concentration range as alpha-thrombin alone. Thus, these same concentrations of alpha-thrombin alone may be required to initiate each sequence of events. The combinatory stimulation could be achieved even if the derivatives were added individually up to 8 hr apart. Moreover, preincubation with either derivative shortened the lag period for initiation of DNA synthesis by native alpha-thrombin. These results indicate that both receptor occupancy and enzymic activity are necessary for thrombin initiation of cell proliferation and that each action initiates a sequence of early events which moves the cell forward toward entry into a proliferative cycle.  相似文献   

11.
Bothrojaracin, a 27-kDa C-type lectin from Bothrops jararaca venom, is a selective and potent thrombin inhibitor (K(d) = 0.6 nM) which interacts with the two thrombin anion-binding exosites (I and II) but not with its catalytic site. In the present study, we analyzed the allosteric effects produced in the catalytic site by bothrojaracin binding to thrombin exosites. Opposite effects were observed with alpha-thrombin, which possesses both exosites I and II, and with gamma-thrombin, which lacks exosite I. On the one hand, bothrojaracin altered both kinetic parameters K(m) and k(cat) of alpha-thrombin for small synthetic substrates, resulting in an increased efficiency of alpha-thrombin catalytic activity. This effect was similar to that produced by hirugen, a peptide based on the C-terminal hirudin sequence (residues 54-65) which interacts exclusively with exosite I. On the other hand, bothrojaracin decreased the amidolytic activity of gamma-thrombin toward chromogenic substrates, although this effect was observed with higher concentrations of bothrojaracin than those used with alpha-thrombin. In agreement with these observaions, bothrojaracin produced opposite effects on the fluorescence intensity of alpha- and gamma-thrombin derivatives labeled at the active site with fluorescein-Phe-Pro-Arg-chloromethylketone. These observations support the conclusion that bothrojaracin binding to thrombin produces two different structural changes in its active site, depending on whether it interacts exclusively with exosite II, as seen with gamma-thrombin, or with exosite I (or both I and II) as observed with alpha-thrombin. The ability of bothrojaracin to evoke distinct modifications in the thrombin catalytic site environment when interacting with exosites I and II make this molecule an interesting tool for the study of allosteric changes in the thrombin molecule.  相似文献   

12.
Alpha-thrombin-induced pulmonary vasoconstriction   总被引:4,自引:0,他引:4  
We examined the direct effects of thrombin on pulmonary vasomotor tone in isolated guinea pig lungs perfused with Ringer albumin (0.5% g/100 ml). The injection of alpha-thrombin (the native enzyme) resulted in rapid dose-dependent increases in pulmonary arterial pressure (Ppa) and pulmonary capillary pressure (Ppc), which were associated with an increase in the lung effluent thromboxane B2 concentration. The Ppa and Ppc responses decreased with time but then increased again within 40 min after thrombin injection. The increases in Ppc were primarily the result of postcapillary vasoconstriction. Pulmonary edema as evidenced by marked increases (60% from base line) in lung weight occurred within 90 min after thrombin injection. Injection of modified thrombins (i.e., gamma-thrombin lacking the fibrinogen recognition site or i-Pr2P-alpha-thrombin lacking the serine proteolytic site) was not associated with pulmonary hemodynamic or weight changes nor did they block the effects of alpha-thrombin. Indomethacin (a cyclooxygenase inhibitor), dazoxiben (a thromboxane synthase inhibitor), or hirudin (a thrombin antagonist) inhibited the thrombin-induced pulmonary vasoconstriction, as well as the pulmonary edema. We conclude that thrombin-induced pulmonary vasoconstriction is primarily the result of constriction of postcapillary vessels, and the response is mediated by generation of cyclooxygenase-derived metabolites. The edema formation is also dependent on activation of the cyclooxygenase pathway. The proteolytic site of alpha-thrombin is required for the pulmonary vasoconstrictor and edemogenic responses.  相似文献   

13.
Thrombin-induced chemotaxis and aggregation of neutrophils   总被引:15,自引:0,他引:15  
Thrombin-induced neutrophil chemotaxis and aggregation were studied using cells isolated from either human or sheep blood. Sheep neutrophils (10(8) cells/ml) exhibited maximum chemotactic migration towards 10(-8)M human alpha-thrombin, 10(-8)M gamma-thrombin (which lacks the fibrinogen site), and 10(-12)MD-Phe-Pro-Arg-CH2-alpha-thrombin (catalytically inactive thrombin). Chemotactic responses of the same magnitude were obtained with human neutrophils (10(8) cells/ml). The chemotactic responses to thrombin were comparable to those obtained with diluted (1:200 v/v) zymosan activated serum (ZAS) and 10(-11)M FMLP. Premixing of the thrombin forms with hirudin in 1:1 stoichiometric amounts abolished the chemotaxis but not chemokinesis Aggregatory responses of human and sheep neutrophils were comparable for ZAS, alpha-thrombin, and gamma-thrombin. The responses of both human and sheep neutrophils to D-Phe-Pro-Arg-CH2-alpha-thrombin were attenuated, indicating that the proteolytic site may be involved in the aggregatory response. The results suggest that thrombin-induced neutrophil chemotaxis and aggregation are mediated by different mechanisms, since chemotaxis is a catalytically independent response whereas aggregation is an active site independent response.  相似文献   

14.
Maximal stimulation of platelets with thrombin results in a rapid increase in cytoplasmic Ca2+ (from 0.1 microM to 1-3 microM), as measured with the fluorescent intracellular Ca2+ indicator Quin-2. Prior addition of the adenylate cyclase stimulators PGD2, PGE1 or forskolin inhibited the rise in cytoplasmic Ca2+. When added after the maximal response to thrombin was attained adenylate cyclase stimulators caused a rapid fall of cytoplasmic Ca2+ back to the original "resting" level. This effect coincides with the reversal of thrombin-induced, Ca2+-dependent protein phosphorylation, and cytoskeleton assembly. It is suggested that cAMP-dependent reactions maintain low levels of cytoplasmic Ca2+ by promoting transport and/or binding of Ca2+.  相似文献   

15.
Addition of thrombin to human platelets results in production of lysophosphatidic acid. Such synthesis of lysophosphatidic acid can be inhibited by mepacrine, an inhibitor of the phospholipase A2 which attacks phosphatidic acid to give lysophosphatidic acid. In the present study, mepacrine was used at a concentration of 2.5-20 microM, sufficient to block aggregation and lysophosphatidic acid formation induced by 0.1 U/ml thrombin. Mepacrine, at this concentration, also blocked thrombin-induced phosphorylation of platelet myosin light chain and a 47 kDa protein, thrombin-induced secretion and thrombin-induced release of arachidonic acid from platelet phospholipids. However, mepacrine also partly inhibited the formation of phosphatidic acid in response to thrombin, consistent with some simultaneous inhibition of phospholipase C. Lysophosphatidic acid (2.5-22 microM) overcame the mepacrine block in thrombin-stimulated aggregation, protein phosphorylation and secretion without stimulating the release of arachidonic acid from platelet phospholipids or the formation of lysophosphatidic acid, and only slightly increasing phosphatidic acid formation. The results suggest that lysophosphatidic acid primarily acts distal to mepacrine inhibition of phospholipase A2 and phospholipase C and are consistent with the possibility that lysophosphatidic acid might be a mediator of part of the effects of low-dose thrombin on human platelets.  相似文献   

16.
Exosite 1 on thrombin mediates low affinity binding to sites on the NH2 termini of the alpha- and beta-chains of fibrin. A subpopulation of fibrin molecules (gammaA/gamma'-fibrin) has an alternate COOH terminus of the normal gamma-chain (gammaA/gammaA-fibrin) that binds thrombin with high affinity. To determine the roles of exosites 1 and 2 in the high affinity interaction of thrombin with gammaA/gamma'-fibrin, binding studies were done with thrombin variants and exosite 1- or 2-directed ligands. alpha-Thrombin bound gammaA/gamma'-fibrin via high and low affinity binding sites. A peptide analog of the COOH terminus of the gamma'-chain that binds alpha-thrombin via exosite 2 blocked the high affinity binding of alpha-thrombin to gammaA/gamma'-fibrin, suggesting that the interaction of alpha-thrombin with the gamma'-chain is exosite 2-mediated. In support of this concept, (a) gamma-thrombin, which lacks a functional exosite 1, bound to gammaA/gamma'-fibrin, but not to gammaA/gammaA-fibrin; (b) thrombin R93A/R97A/R101A, an exosite 2-defective variant, bound only to gammaA/gamma'-fibrin via low affinity sites; and (c) exosite 2-directed ligands reduced alpha-thrombin binding to gammaA/gamma'-fibrin. However, several lines of evidence indicate that exosite 1 contributes to the high affinity interaction of thrombin with gammaA/gamma'-fibrin. First, the affinity of gamma-thrombin for gammaA/gamma'-fibrin was lower than that of alpha-thrombin. Second, removal of a low affinity binding site on the beta-chain of gammaA/gamma'-fibrin reduced its affinity for alpha-thrombin. Third, exosite 1-directed ligands reduced alpha-thrombin binding to gammaA/gamma'-fibrin. Taken together, these data suggest that, although exosite 2 mediates the interaction of thrombin with the gamma'-chain of gammaA/gamma'-fibrin, simultaneous ligation of exosite 1 by low affinity binding sites is essential for the high affinity interaction of thrombin with gammaA/gamma'-fibrin.  相似文献   

17.
Thrombin inhibits adenylate cyclase and stimulates GTP hydrolysis by high-affinity GTPase(s) in membranes of human platelets at almost identical concentrations. Both of these thrombin actions are similar to those observed with agonist-activated alpha 2-adrenoceptors coupling to the inhibitory guanine nucleotide-binding protein N1. However, stimulation of GTP hydrolysis caused by adrenaline (alpha 2-adrenoceptor agonist) and by thrombin at maximally effective concentrations was partially additive, whereas with regard to adenylate cyclase inhibition no additive response was observed. Furthermore, treatment of platelet membranes with pertussis toxin, which inactivates Ni and largely abolishes thrombin- and adrenaline-induced adenylate cyclase inhibition and adrenaline-induced GTPase stimulation, decreased the thrombin-induced stimulation of GTP hydrolysis by only about 30%. Additionally, the thiol reagent N-ethylmalemide (NEM) at rather low concentrations abolished thrombin- and adrenaline-induced stimulation of GTP hydrolysis was decreased by only 30-40% by treatment of platelet membranes with even high concentrations of NEM. Treatment with cholera toxin, which inhibits GTPase activity of the Ns (stimulatory guanine nucleotide-binding) protein, has no effect on thrombin-stimulated GTP hydrolysis. The data suggest that thrombin interaction with its receptor sites in platelet membranes leads to stimulation of two GTP-hydrolysing enzymes. One of these enzymes is apparently Ni and is also activated by agonist-activated alpha 2-adrenoceptors and is inactivated by pertussis toxin and NEM treatment. The other GTP-hydrolysing enzyme activated by thrombin may represent a guanine nucleotide-binding protein apparently involved in the coupling of thrombin receptors to the phosphoinositide phosphodiesterase.  相似文献   

18.
Stimulation of amiloride-sensitive sodium (Na+) influx and the subsequent activation of NA+, K+-ATPase by serum or growth factors have been implicated as early events leading to initiation of cell proliferation. We recently demonstrated that amiloride inhibits thrombin-initiated DNA synthesis not by inhibiting an early event occurring during the first 8 hr, but rather by inhibiting some later event 8 to 12 hr after thrombin addition. To further probe the relationship between stimulation of ion influx and initiation of cell proliferation, human alpha-thrombin was converted to gamma-thrombin, nitro-alpha-thrombin, and diisopropylphospho (DIP)-alpha-thrombin. These derivatives retain either the capacity to bind cell surface alpha-thrombin receptors or thrombin esterase activity, but they do not initiate DNA synthesis. At low concentrations of alpha-thrombin or the various thrombin derivatives, only alpha-thrombin stimulates 86Rb+ influx, suggesting a correlation between stimulation of influx and the ability of these derivatives to initiate DNA synthesis. Concentrations of a DIP-alpha-thrombin that saturate the alpha-thrombin receptors (up to 2 micrograms/ml) do not stimulate either the early or late influx of 86Rb+, indicating that DIP-alpha-thrombin binding alone is not sufficient to stimulate ion fluxes. High concentrations of either gamma-thrombin or nitro-alpha-thrombin, however, stimulate both early and late 86RB+ uptake but do not initiate DNA synthesis. These results demonstrate that events leading to both the early and late stimulation of 86Rb+ influx by themselves are not sufficient to initiate cell proliferation. Thus, initiation may require a combination of events that can be independently regulated by different transmembrane signals.  相似文献   

19.
Thymosin alpha 1-inhibited fibrinogen clotting activity of alpha-thrombin, but not amidolysis of H-D-Phe-Pip-Arg-pNA. Modulation of thrombin interaction with rat peritoneal mast cells (RPMC) by suppressors of additional recognition binding site (thymosin and heparin) was studied. Thrombin-induced pHi changes of RPMC were controlled with pH-sensitive fluorescent dye, BCECF. Thrombin caused a biphasic changes in pHi: rapid cell acidification (0.02) followed by slow alkalinization (0.06 above baseline for 18 min). Thymosin suppressed thrombin-induced pHi increase above resting level. Similar changes in pHi were observed after modification of additional recognition binding site by heparin. Beta/gamma-thrombin with disrupted additional binding site was shown to induce only a decrease of pHi. It is concluded that thymosin alpha 1 is endogenous modulator of alpha-thrombin activity.  相似文献   

20.
The interaction of thrombin with proteins at the platelet surface was assessed by chemical cross-linking with the membrane-impermeable reagents bis(sulphosuccinimidyl)suberate and dithiobis(sulphosuccinimidyl propionate) under conditions which induced no modification of intracellular proteins and minimal cross-linking of membrane glycoproteins. The proteins covalently linked to 125I-labelled alpha and gamma-thrombin were analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and crossed immunoelectrophoresis. 125I-alpha-thrombin was detected in high-molecular-mass complexes (a) at the top of a 3% acrylamide stacking gel and (b) with a Mr approximately equal to 400,000. In addition, two complexes of 240 kDa and 78 kDa were characterized. Hirudin prevented the formation of each of these complexes. The 78-kDa complex occurred spontaneously in the absence of bifunctional reagents, was only observed with active alpha-thrombin and was not dissociated by hirudin. Such characteristics are similar to those of a serpin serine-protease complex. The 240-kDa complex was formed with 0.8-100 nM alpha-thrombin, was observed after a short incubation time (30 s) and occurred with TosLysCH2Cl-inactivated alpha-thrombin. After analysis of Triton-X-100-soluble extracts of cross-linked platelets by crossed immunoelectrophoresis against a rabbit antiserum to platelets, two principal precipitates contained 125I-alpha-thrombin. These were a precipitate containing GPIIb-IIIa complexes and a precipitate in the position of GPIb. Indirect immunoprecipitation of GPIb, using a murine monoclonal antibody, confirmed it to be the major platelet component in the 240-kDa complex. Significantly, 125I-gamma-thrombin, which activates platelets with a prolonged lag phase, failed to bind to GPIb and complexes in the 240-kDa and 78-kDa molecular mass range were not observed. We conclude that several binding sites for alpha-thrombin are present at the platelet surface, and that GPIb is one of them. The studies with gamma-thrombin suggest that binding to GPIb is not obligatory for platelet activation although it could be involved in an initial step of the platelet response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号