首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
为探究富硒壶瓶碎米荠(Cardamine hupingshanensis)对青鱼(Mylopharyngodon piceus)幼鱼生长、血清生理生化、肝脏硒代谢、抗氧化能力和先天免疫指标的影响,选取360尾初始体重为(5.51±0.02) g的青鱼幼鱼随机分配至4个实验组中,每组3个重复。在基础饲料中添加富硒壶瓶碎米荠的量为0、0.5、1.0和2.0 g/kg(硒的实际含量分别为0.04、0.43、0.75和1.57 mg/kg),同时添加矿物质混合物(无硒添加)和维生素混合物,配置成4种等氮等能的青鱼幼鱼试验饲料,养殖周期为60d。结果显示:饲料中添加0.5和1.0 g/kg富硒壶瓶碎米荠时,鱼体增重率(WG),特定生长率(SGR)较对照组和过量组(2.0 g/kg)显著升高,饲料系数(FCR)显著降低(P<0.05)。当饲料中富硒壶瓶碎米荠添加量为0.5—1.0 g/kg时,血清中的甘油三酯(TG)、总胆固醇(TCH)和白蛋白(ALB)含量呈上升趋势,而葡萄糖(GLU)含量显著下降(P<0.05)。饲料中添加0.5—1.0 g/kg富硒壶瓶碎米荠时可显著提高肝脏核因子...  相似文献   

2.
《生物磁学》2013,(24):I0004-I0004
中国科学技术大学教授尹雪斌研究组在湖北恩施发现一种新型超富硒植物—壶瓶碎米荠,从而有望为硒缺乏者带来福音。相关研究在线发表于美国《公共科学图书馆·综合》。  相似文献   

3.
采用正交试验研究了碎米荠、韭菜、大豆、马铃薯的产量、含硒量与土壤酸碱度、硒酸盐、亚硒酸盐含量的关系。结果表明:影响作物含硒量最大的因素是作物品种,不同作物间差异极显著。在土壤中施用硒酸钠和亚硒酸钠均能够提高作物含硒量,用量均以1.0 mg/kg为宜;硒酸钠会使作物产量降低,用量过高使作物硒吸收总量下降;土壤pH值增加有利于植物对硒的吸收,但综合考虑作物产量、含硒量和硒摄入总量,土壤适合的pH值应在6.7~7.9之间。  相似文献   

4.
对湖北恩施的硒超积累植物——壶瓶碎米荠的根际微生物特征进行16S rRNA基因文库分析,结果显示其根际微生物相较于非根际土壤微生物具有更高的丰度和更低的复杂度,而且主要由α-变形菌纲(15%~22%)、β-变形菌纲(10%~16%)、放线菌纲(10%~18%)、酸杆菌纲(8%~15%)、γ-变形菌纲(5%~16%)等组成;此外,根际微生物还存在很多特异性微生物,如:硝化螺旋菌纲(2%~5%)、芽单孢菌纲(2%~5%)、疣微菌纲(2%~4%)、浮霉菌纲(1%~2%)、其他(丰佑菌纲、鞘脂杆菌纲、芽孢杆菌纲、梭菌纲)(3%~4%)。代表性的根际微生物α-变形菌纲和硝化螺旋菌纲可能在壶瓶碎米荠对硒的吸收、积累过程中扮演了重要的作用。  相似文献   

5.
【目的】本实验室保藏的一株异化硝酸盐还原菌(Pseudomonas alcaliphila MBR),其能够在好氧环境下以有机碳源为电子供体,把易溶解、高毒性亚硒酸钠还原成为红色单质硒,本文对该菌株还原亚硒酸盐的特征进行了研究。【结果】结果表明该菌株可以在pH为6-11环境中生长,对亚硒酸钠有较强抗性,其MIC(minimal inhibitory concentration)可高达50 mmol/L。在5天时间内,菌体以柠檬酸钠为电子供体,把2 mmol/L亚硒酸钠完全还原为红色单质硒并主要积累于胞外。硝酸盐和还原型谷胱甘肽对菌体还原亚硒酸钠具有促进作用,初步确定菌体对亚硒酸钠的还原是细胞膜或细胞质中的某些物质催化的结果。【结论】本项研究为应用Pseudomonas alcaliphila MBR于生物反应器提供了重要基础。  相似文献   

6.
中国是典型缺硒大国,一条马鞍形土壤缺硒带呈东北-西南走向分布,占主要农耕区土壤面积的33.34%,但同时也存在点状分布的富硒-高硒地区,占主要农耕区土壤面积的8.69%,成为湖北恩施、陕西安康、安徽石台、广西巴马、江西宜春等地方农业转型升级的新抓手,得到大力开发利用。伴随着硒资源的开发利用,一些科学问题被广泛提出,如:硒摄入有何健康效果?天然富硒区人群是否有实证研究数据?硒-镉共生导致天然富硒农产品富硒的同时是否存在镉含量超标问题?硒资源中的硒形态组成有何重要意义?硒超积累植物-壶瓶碎米荠的超积累硒的机制是什么?这些关键科学问题亟待解答。基于对天然硒资源近10年的研究成果,对以上科学问题进行了一些有益探讨,以期为未来高效安全科学地利用硒资源提供一些研究思路。  相似文献   

7.
为了明确不同培养条件下杏鲍菇对外源硒的耐受性,分别在固体培养基、液体发酵培养基和栽培基质中添加不同量的亚硒酸钠,并检测杏鲍菇子实体中富集硒的存在形态。结果表明:固体培养条件下,硒浓度低于160 mg/L时,对菌丝的生长没有显著影响;液体培养条件下,4 mg/L的硒元素即可对杏鲍菇菌丝体的生长产生显著抑制;栽培模式下,基质中补充10~600 mg/kg的硒元素,不会影响杏鲍菇菌丝体的生长,且子实体中的硒含量会随基质中硒浓度的增加而增加。子实体硒形态分析表明,富集硒以硒代蛋氨酸、甲基硒代半胱氨酸、硒代胱氨酸和亚硒酸盐[Se(IV)]四种形式存在,其中硒代蛋氨酸是硒与氨基酸的主要结合形式。  相似文献   

8.
【目的】探究甲基营养型芽孢杆菌(Bacillus methylotrophicus)对植物病原菌玉蜀黍尾孢菌(Cercospora zeae-maydis Tehon et Daniels)、链格菌(Alternaria alternate)和灰葡萄孢菌(Botrytis cinerea)的拮抗作用并鉴定抗菌物质,为其病害防治提供优良生防菌。【方法】平板对峙法初筛和杯碟法筛选拮抗菌株;微生物形态学和16S rRNA基因鉴定拮抗菌株;薄层色谱(TLC)和编码基因分析鉴定抗菌物质;玉米田间生防试验评估拮抗菌对3种病原菌的防治效果。【结果】筛选到一株能够明显拮抗玉蜀黍尾孢菌、链格菌和灰葡萄孢菌的甲基营养型芽孢杆菌B-1841,抑制率分别为65.95%、71.04%和46.69%,抑菌物质为伊枯草菌素类脂肽。玉米田间生防试验表明,菌株B-1841对玉蜀黍尾孢菌、链格菌和灰葡萄孢菌感染的玉米病害均有防治效果,相对防效分别为60.25%、69.89%和45.21%。【结论】甲基营养型芽孢杆菌B-1841对玉蜀黍尾孢菌、链格菌和灰葡萄孢菌引起的病害有防治作用,在农作物真菌病害防治方面具有潜在应用价值。  相似文献   

9.
亚硒酸钠和硒酸钠对小白菜生长生理特性的影响   总被引:9,自引:0,他引:9  
以小白菜品种'秦白2号'为材料,采用盆栽试验研究了不同浓度亚硒酸钠[Se(IV)]和硒酸钠[Se(VI)]胁迫对小白菜生长生理特性的影响及其生理机制,为土壤硒污染修复及其合理开发利用提供理论依据.结果表明,Se(IV)≤10.0 mg·kg-1时,小白菜的叶长、叶宽显著下降,而生物量没有受到显著影响;Se(VI)≤1.0 mg·kg-1时,叶长、叶宽、生物量没有显著变化;更高浓度处理时,叶长、叶宽、生物量均随外源Se(IV)和Se(VI)处理浓度的增大而急速下降.Se(IV)≤40.0 mg·kg-1和Se(VI)≤20.0 mg·kg-1处理均对小白菜叶片叶绿素含量无显著影响,但更高浓度外源Se(IV)和Se(VI)却显著抑制了叶绿素合成.低浓度外源Se(IV)和Se(VI)均使小白菜叶片谷胱甘肽过氧化物酶(GSH-Px)活性上升,膜质过氧化物(MDA)含量下降,对超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性及脯氨酸含量无显著影响;高浓度硒使MDA含量、脯氨酸含量及SOD活性上升,而使GSH-Px活性和CAT活性下降;外源Se(IV)和Se(VI)均使过氧化物酶(POD)活性降低.研究发现,低浓度外源Se(IV)和Se(VI)均提高了小白菜的抗氧化作用,从而促进小白菜叶片叶绿素的合成和生长,高浓度时则相反;低浓度硒的抗氧化作用和高浓度硒的过氧化作用均以Se(VI)大于Se(IV).说明硒酸钠的有效性和毒害作用均大于亚硒酸钠.  相似文献   

10.
希瓦氏菌Shewallena oneidensis MR-1合成硒纳米棒   总被引:1,自引:0,他引:1  
邓欢  郑志勇  赵峰 《微生物学报》2015,55(8):1074-1078
摘要:【目的】探索采用希瓦氏菌合成硒(Se)纳米棒,并阐明合成底物Se(IV)的浓度与细菌培养时间对生物合成的影响。【方法】将希瓦氏菌Shewallena oneidensis MR-1 接种至Luria-Bertani(LB)液体培养基,分别以Se(IV)浓度0.1、1、10和100 mmol/L的Na2 SO3作为电子受体,厌氧培养并绘制生长曲线。再将希瓦氏菌接种到含最适Se( IV)浓度的LB 培养基中,在厌氧培养后第24和72 h离心获取沉淀。采用扫描电镜、X射线能谱和X射线衍射对沉淀进行分析。【结果】在Se(IV)浓度1 mmol/L的培养基中培养24 h形成的纳米棒沉淀截面直径约80 nm,长度2-3 μm。而培养72 h形成的沉淀较大,超出纳米物质范畴。采用X射线能谱和X射线衍射确定纳米棒组成为单质Se。【结论】本研究为生物合成Se纳米棒提供了一种可行的方法。希瓦氏菌最适宜在1 mmol/L Se(IV)浓度下以及在对数生长期大量合成Se纳米棒,具有潜在应用价值。  相似文献   

11.
Since differences have been found in animals, the efficacies of selenomethionine (SeMet), selenite, and selenocystine (SeCys) for glutathione peroxidase (GPx) induction and cellular incorporation were compared and some effects of interacting nutrients on SeMet utilization were examined in tissue cultures. In three cell lines, Chang liver cells, mouse myoblasts and human fibroblasts, selenite was more effective than SeMet for GPx induction. However, radiotracer studies showed that SeMet was more rapidly incorporated into all cells than either selenite or SeCys. Chromatography of acid hydrolysates of Chang liver cells grown with 75Se-labeled SeMet indicated that approximately 90% of incorporated 75Se remained as SeMet, and less than 10% was as SeCys, the form of Se in GPx. Selenite supplementation slightly reduced both the incorporation of 75SeMet and the proportion of cellular 75Se recoverable as SeCys in Chang liver cells. Supplementation with L-methionine, however, significantly reduced 75SeMet incorporation, but significantly increased the proportion of cellular 75Se recovered as SeCys. L-cystine supplementation had no effect on either the cellular incorporation of 75SeMet or the proportion of cellular 75Se recovered as SeCys. These studies of SeMet utilization and effects of interacting nutrients are reflective of observations on SeMet metabolism in whole animals and humans.  相似文献   

12.
The objective of this study was to determine the concentration of total selenium (Se) and proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the tissues of female turkeys offered diets containing graded additions of selenized-enriched yeast (SY), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of breast and thigh muscle were assessed at 0 and 10 days post mortem. A total of 216 female turkey poults were enrolled in the study. A total of 24 birds were euthanized at the start of the study and samples of blood, breast, thigh, heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n = 48 birds/treatment) that differed either in Se source (SY v. SS) or dose (Con [0.2 mg/kg total Se], SY-L and SS-L [0.3 mg/kg total Se as SY and SS, respectively] and SY-H [0.45 mg total Se/kg]). Following 42 and 84 days of treatment 24 birds per treatment were euthanized and samples of blood, breast, thigh, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in breast and thigh tissue at the end of the study. There were responses (P < 0.001) in all tissues to the graded addition of dietary Se, although rates of accumulation were highest in birds offered SY. There were notable differences between tissue types and treatments in the distribution of SeMet and SeCys, and the activity of tissue and erythrocyte GSH-Px (P < 0.05). SeCys was the predominant form of Se in visceral tissue and SeMet the predominant form in breast tissue. SeCys contents were greater in thigh when compared with breast tissue. Muscle tissue GSH-Px activities mirrored SeCys contents. Despite treatment differences in tissue GSH-Px activity, there were no effects of treatment on any meat quality parameter.  相似文献   

13.
The metabolism of selenite, selenocysteine (SeCys), and selenomethionine (SeMet) was studied in three human lymphoblast cell lines with defects in the transsulfuration pathway and in control cells without this defect. There were very little differences in the induction of glutathione peroxidase (GPX) activity by selenite and SeCys among these cells. However, markedly higher levels of SeMet were required to induce GPX activity in transsulfuration defective cells than in control cells. Surprisingly, the addition of pyridoxal phosphate (PLP) to the media resulted in elevated GPX activity in all cells regardless of the chemical form of Se used. There is no explanation for this effect of PLP, but it is not through direct reaction with GPX or on the alteration of sulfhydryl groups.  相似文献   

14.
一株真菌拮抗细菌Z21的筛选与鉴定及其发酵条件优化   总被引:2,自引:0,他引:2  
【背景】芽孢杆菌属的许多细菌具有抗逆性强、安全等特点,一直以来都是开发新型活性物质的研究热点。【目的】筛选对食品腐败真菌有抑制作用的细菌,将其开发为天然食品防腐剂。【方法】采用平板分离法、平板对峙法、抑制菌丝生长速率法从空气、竹子内生细菌中筛选真菌拮抗菌,通过形态、生理生化特征及16S rRNA基因序列分析等方法对其进行鉴定,利用正交试验确定其最优生长条件。【结果】筛选到一株对6种常见霉菌均有较强抑制作用的细菌Z21。Z21与甲基营养型芽孢杆菌(Bacillusmethylotrophicus strain CBMB205~T)的相似性最高,且形态特征和生理生化特征与CBMB205~T菌株基本相符。Z21最佳发酵培养基配方和培养条件分别为:葡萄糖20.0 g/L、NaNO_3 20.0 g/L、MgSO_4 3.0 g/L,培养温度为32°C,培养时间为48 h。【结论】Z21为甲基营养型芽孢杆菌(Bacillus methylotrophicus),对黑曲霉、康氏木霉、绿色木霉、少根根霉、易脆毛霉、赭绿青霉的生长具有较强的抑制作用且抑菌效果稳定,为广谱真菌拮抗菌。  相似文献   

15.
The metabolic detoxification of selenite and many other selenium compounds involves a series of S-adenosylmethionine-dependent methylations yielding dimethylselenide (DMSe), which is exhaled, and trimethylselenonium ion (TMSe), which is excreted in the urine. This paper shows that periodate-oxidized adenosine (Adox) inhibits these methylation reactions in vivo and increases the toxicity of selenite. When Adox was injected in mice at 100 mumol/kg 30 min before injection of [75Se]selenite at 0.4 mg Se/kg the appearances of [75Se]DMSe in the breath and [75Se]TMSe in the liver were completely inhibited for 90 min. This was mediated by accumulation of S-adenosylhomocysteine, the methyltransferase inhibitor, in the livers of Adox-treated mice due to inhibition of its hydrolase enzyme. During 24 h, Adox-treated mice excreted no detectable urinary [75Se]TMSe and exhaled only 20% as much [75Se]DMSe as controls. The urine of Adox-treated mice also contained S-adenosylhomocysteine at a level (ca. 4 mM), 200 times that of untreated mice, which provided a convenient index of methylation potential in the intact animal. When three groups of three mice each were injected with 100 mumol Adox/kg, selenite at 4 mg Se/kg, or a combination of the two, the mice receiving the combination were dead within 2 days, while the mice in the other two groups all survived at least 4 days. These results verify the enzymatic nature of selenium methylation in vivo, support its importance in detoxification, and indicate the value of Adox in further studies of selenium metabolism.  相似文献   

16.
The usual first step in the intracellular metabolism of exogenous selenite is its chemical reaction with glutathione to form selenodiglutathione (1). We have investigated whether selenite also reacts intracellularly with other SH compounds. HeLa cells were exposed to [75Se]selenite and lysed with SDS. Cellular proteins and nucleic acids were precipitated with trichloroacetic acid, and the acid-soluble fraction was analyzed by ion-exchange thin-layer chromatography (ion-exchange TLC) and autoradiography. In control cells, the major [75Se]-containing species detected can be identified by its mobility as selenodiglutathione. Two other species were detected, which can be identified as selenodimercaptoethylamine and the mixed selenotrisulfide of mercaptoethylamine and glutathione. In contrast, in cells that were depleted of glutathione (by treatment with buthionine sulfoximine), very little, if any, selenodiglutathione was detected. However, new [75Se]-containing species were detected, which can be identified as selenodicysteine and the mixed selenotrisulfide of cysteine and glutathione. The same species were detected when [75Se]selenite was added to the acid-soluble fraction of a cell extract (as opposed to living cells), confirming that these compounds can be formed by nonenzymatic reactions.  相似文献   

17.
Toxicity of selenium to Lemna minor in relation to sulfate concentration   总被引:1,自引:0,他引:1  
The aquatic plant Lemna minor L. was treated with sodium selenite or sodium selenate to test the toxicity of these salts in relation to high or low levels of sulfate in the culture medium. Several morphophysiological aspects, such as multiplication rate (MR), ratio of the number of fronds to number of colonies (Nfr/Ncol), frond size, cell ultrastructure, pigment content and guaiacol peroxidase (EC 1.11.1.7) activity were evaluated. Their variations might be an indirect means of evaluating the degree of susceptibility or tolerance of this plant to selenium (Se). Sodium selenite or sodium selenate treatments at concentrations ranging from 1 to 256 μ M generally decreased the investigated parameters. Moreover, the sulfate concentration influenced the toxicity of both Se salts. In general, with treatments in a medium containing a high sulfate (HS) content, sodium selenite appeared more toxic than sodium selenate, whereas in a low sulfate (LS) medium, sodium selenate seemed more toxic. MR was significantly increased at 1–4 μ M selenite and LS or 8 μ M selenate and HS levels, suggesting that Se may be an essential nutrient for this plant.  相似文献   

18.
Selenium (Se) shows both beneficial and toxic effects on plant growth. Rice (Oryza sativa L.) seedlings cultivated under lower concentrations of sodium selenite showed enhanced growth, whereas higher concentrations of sodium selenite repressed seedling growth. To acquire detailed regulatory mechanisms underlying these effects, a comparative proteomics study using 2-dimensional gel electrophoresis and MALDI-TOF/TOF MS was performed. By comparison of gel images between Se treatments and control, 66 and 97 differentially expressed proteins were identified in shoot and root, respectively under at least one of the Se treatment concentrations. Gene Ontology and Clustering analysis reveal primary metabolism, photosynthesis and redox homeostasis are the most highly affected biological processes by Se treatments. Lower Se treatments (2 and 6 mg/L sodium selenite) activated antioxidative system, enhanced photosynthesis and primary metabolism. However, higher Se treatment (10 mg/L sodium selenite) damaged photosynthesis apparatus, inhibited photosynthesis and primary metabolism. Protein ubiquitination and phosphorylation may also play important roles in Se response in rice. In conclusion, our study provided novel insights into Se response in rice at the proteome level, which are expected to be highly useful for dissecting the Se response pathways in higher plants and for producing Se enriched rice cultivars in the future.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号