首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sampled 17 populations of a rare autotetraploid Aster kantoensis (Asteraceae) from three river systems located in central Japan, and studied them for allelic variation at 22 enzyme loci. There was no significant correlation between the actual population size and three genetic diversity parameters, suggesting that the effective population size was very small even for the large populations, i.e., even large populations may still have a high probability of being of recent origin and remain influenced by the founder effect. Compared to other autotetraploid species, the total genetic variation of A. kantoensis is small. The number of alleles and gene diversity of a population were not significantly different among the river systems, although the percentage of polymorphic loci was different. Genetic differentiation among river systems was larger than between populations within the river systems, thereby indicating that gene flow between river systems is small, especially between the Kinu River system and Tama or Sagami River systems.  相似文献   

2.
中间黄颡鱼群体遗传变异与亲缘生物地理   总被引:2,自引:0,他引:2  
通过分析81尾采自华南西部12条水系的中间黄颡鱼(Pelteobagrus intermedius)mtDNA控制区435 bp的序列,研究其群体遗传变异及亲缘生物地理格局。结果显示,中间黄颡鱼群体间的遗传分化较小,核苷酸变异只有0.54%。12条水系的群体共有7个单倍型,其中一些现已相互隔离的水系中的群体共享同一个单倍型,提示这些水系曾经有非常密切的联系。根据嵌套进化支序分析,中间黄颡鱼可能起源于峒中河、北仑河、防城河所在的广西与越南交界地区,并通过两条途径向华南沿海西部诸独立水系和海南岛扩散,在演化过程中,曾发生片断化事件,长距离建群和持续的分布区扩张。  相似文献   

3.
Previous studies have demonstrated that large rivers can influence inter- and intra-specific gene flow for many animals. The effects of large rivers on the genetics of plant populations have focused on either hydrochoric impacts of water current on gene flow or genetic differentiation among populations from different watersheds. Few studies have explicitly tested the barrier effects on plant gene flow across banks of large rivers, especially their relative effects on pollen and seed dispersals. The Yangtze River (Changjiang River), one of the major rivers of the world, provides an excellent model to evaluate the impacts of rivers on gene flow in plants. Using RAPD (random amplified polymorphic DNA) and cpDNA (chloroplast DNA) markers, we investigated the genetic structure of 10 populations of Vitex negundo in two regions of Three-Gorge Area along the Yangtze River. Each region contained two populations on the north bank, two on the south bank and one island population along the river. The analyses indicated low RAPD between banks, and similar or a little higher differentiation between populations within the same bank. In contrast, a large proportion of chloroplast polymorphism was ascribed to among-bank variation but much lower cpDNA differentiation was among populations within the same bank. These results indicate that the Yangtze River represents a general barrier to the dispersal of seeds but not to the movement of pollen in V. negundo. The cpDNA genetic distances or differentiations between the island populations and those on either bank of the river are intermediate to those between the banks across the river, implying that the islands in the Yangtze River may serve as a stepping-stone for seed dispersal. Our results suggest that large rivers may serve as a general barrier, not only for the movement of animals, but also for the dispersal of plants, which should be of great significance for the conservation of biodiversity around the rivers.  相似文献   

4.
为研究其种群遗传变异和亲缘地理格局,分析了107尾采自华南西部和海南岛的12条水系的美丽小条鳅(Micronoema-cheilus pulcher Nichols)控制区934-938 bp的序列,其中有79个核苷酸变异位点。分子变异分析(AMOVA)表明,种群间的遗传变异占46.88%,种群内的遗传变异占55.06%。基于36个单倍型的系统树显示,12条水系的种群聚成两支。其中,广西沿海诸独立水系(防城河、峒中河、北仑河、南流江)和西江水系与广东漠阳江和潭江水系关系密切,而海南岛万泉河和南渡江与广东鉴江水系关系密切。根据嵌套进化枝系地理分析(NCPA)推测,防城河周边地区可能是美丽小条鳅的扩散中心,该物种可由此区域通过两条途径扩散:(1)沿西江水系向广西沿海独立水系至广东漠阳江和潭江水系扩散;(2)向海南岛诸水系再至雷州半岛的鉴江水系扩散。在演化过程中,曾发生片断化事件、长距离建群和持续的分布区扩张。  相似文献   

5.
The use of genetic methods to quantify the effects of anthropogenic habitat fragmentation on population structure has become increasingly common. However, in today’s highly fragmented habitats, researchers have sometimes concluded that populations are currently genetically isolated due to habitat fragmentation without testing the possibility that populations were genetically isolated before European settlement. Etheostoma raneyi is a benthic headwater fish restricted to river drainages in northern Mississippi, USA, that has a suite of adaptive traits that correlate with poor dispersal ability. Aquatic habitat within this area has been extensively modified, primarily by flood-control projects, and populations in headwater streams have possibly become genetically isolated from one another. We used microsatellite markers to quantify genetic structure as well as contemporary and historical gene flow across the range of the species. Results indicated that genetically distinct populations exist in each headwater stream analyzed, current gene flow rates are lower than historical rates, most genetic variation is partitioned among populations, and populations in the Yocona River drainage show lower levels of genetic diversity than populations in the Tallahatchie River drainage and other Etheostoma species. All populations have negative FIS scores, of which roughly half are significant relative to Hardy–Weinberg expectations, perhaps due to small population sizes. We conclude that anthropogenic habitat alteration and fragmentation has had a profoundly negative impact on the species by isolating E. raneyi within headwater stream reaches. Further research is needed to inform conservation strategies, but populations in the Yocona River drainage are in dire need of management action. Carefully planned human-mediated dispersal and habitat restoration should be explored as management options across the range of the species.  相似文献   

6.
Aim The phylogeography of the two closely related species Pseudobarbus afer and Pseudobarbus phlegethon was investigated to assess the association of evolutionary processes, inferred from mitochondrial DNA (mtDNA) sequence variation, with hypothetical palaeoriver systems and other climatic and landscape changes. Location One western and several southern river systems in South Africa. Methods We sampled known populations and confirmed known distribution gaps. This was followed by an assessment of mtDNA control region sequence variation for 31 localities across 17 river systems across the range of the species complex. A map of possible offshore drainage patterns during the last major regression event was constructed based on bathymetry and geological studies. Results The genetic distinction of four major lineages of P. afer strongly correspond with proposed palaeoriver systems. However, a western ‘Forest’ lineage, is widespread across two such proposed systems and is closely related to P. phlegethon on the west coast of South Africa. Both the ‘Krom’ and ‘St Francis’ lineages were identified in the single palaeoriver system proposed for St Francis Bay. A fourth ‘Mandela’ lineage is restricted to the one or two palaeoriver systems proposed for Nelson Mandela Bay. Four minor lineages were identified within the Forest lineage and two within the Mandela lineage. Main conclusions The close relationship between P. phlegethon and the Forest lineage of P. afer can only be explained by a series of river captures. We suggest the Gourits River system as a historical link that could account for this relationship. On the south coast, lower sea levels than at present allowed confluence between currently isolated river systems, offering opportunities for dispersal among these populations. At present, isolation between different river systems rather than dispersal appears to have a dominant influence on mtDNA diversity.  相似文献   

7.
The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as ‘vulnerable’ to extinction under Australia’s Environment Protection and Biodiversity Conservation Act 1999. Historical accounts indicate this species occurred naturally in two adjacent river systems in Australia, the Burnett and Mary. Current day populations in other rivers are thought to have arisen by translocation from these source populations. Early genetic work detected very little variation and so had limited power to answer questions relevant for management including how genetic variation is partitioned within and among sub-populations. In this study, we use newly developed microsatellite markers to examine samples from the Burnett and Mary Rivers, as well as from two populations thought to be of translocated origin, Brisbane and North Pine. We test whether there is significant genetic structure among and within river drainages; assign putatively translocated populations to potential source populations; and estimate effective population sizes. Eleven polymorphic microsatellite loci genotyped in 218 individuals gave an average within-population heterozygosity of 0.39 which is low relative to other threatened taxa and for freshwater fishes in general. Based on F ST values (average over loci = 0.11) and STRUCTURE analyses, we identify three distinct populations in the natural range, one in the Burnett and two distinct populations in the Mary. These analyses also support the hypothesis that the Mary River is the likely source of translocated populations in the Brisbane and North Pine rivers, which agrees with historical published records of a translocation event giving rise to these populations. We were unable to obtain bounded estimates of effective population size, as we have too few genotype combinations, although point estimates were low, ranging from 29 - 129. We recommend that, in order to preserve any local adaptation in the three distinct populations that they be managed separately.  相似文献   

8.
Twenty-five populations of westslope cutthroat trout from throughout their native range were genotyped at 20 microsatellite loci to describe the genetic structure of westslope cutthroat trout. The most genetic diversity (heterozygosity, allelic richness, and private alleles) existed in populations from the Snake River drainage, while populations from the Missouri River drainage had the least. Neighbor-joining trees grouped populations according to major river drainages. A great amount of genetic differentiation was present among and within all drainages. Based on Nei’s D S , populations in the Snake River were the most differentiated, while populations in the Missouri River were the least. This pattern of differentiation is consistent with a history of sequential founding events through which westslope cutthroat trout may have experienced a genetic bottleneck as they colonized each river basin from the Snake to the Clark Fork to the Missouri river. These data should serve as a starting point for a discussion on management units and possible distinct population segments. Given the current threats to the persistence of westslope cutthroat trout, and the substantial genetic differentiation between populations, these topics warrant attention.  相似文献   

9.
Gene products of 18 allozyme loci from 1268 individuals of a Japanese freshwater goby called donko, Odontobutis obscura (Odontobutidae; Gobioidei), from 33 localities in the Koya River, Yamaguchi Prefecture, Japan, were investigated to determine the extent of genetic divergence and gene flow within a river metapopulation. Genetic indices including GST(mean FST 0.182), FIT(mean 0.192) and D(mean 0.015) indicated a considerable divergence of local populations in the river. The genetic distance (D) and channel distance between pairs of populations did not show a good correlation, and geographical neighbors were not always genetic neighbors. Therefore, the genetic divergence of populations is attributable to independent genetic drift with restricted gene flow among populations. The agricultural dams and weirs constructed across the river must be responsible for the restricted gene flow. The metapopulation structure of O. obscura in the Koya River may be barely sustained by one-way gene flow only from the upper to the lower populations. An occasional artificial transplantation of some individuals from the lower to the upper populations may be one alternative to maintain a river metapopulation structure safely.  相似文献   

10.
1. Caridina zebra is a common atyid shrimp in some tropical rainforest streams in far north Queensland, Australia. Genetic variation at five allozyme loci was used to estimate the level of dispersal among populations of this species, within and between stream systems. Shrimps were sampled from nine streams in the Tully River catchment and two headwater streams in the adjacent Herbert River catchment in an area under consideration for extensive hydroelectric development.
2. High levels of genetic differentiation were recorded among most populations which suggests that, like other fully aquatic species, movement is limited to a very small spatial scale.
3. In the Tully catchment, populations of shrimp from streams with confluences at high altitude showed less genetic differentiation than those from streams which directly entered the lower river. Dispersal between the latter streams is clearly limited by the presence of large waterfalls and cascades.
4. Adjacent stream populations were often highly differentiated, despite their close proximity, suggesting that overland dispersal is unlikely. However, populations of shrimp in the two streams in the Herbert catchment were strikingly similar in genetic structure to those in adjacent headwater streams of the Tully. Such similarity may reflect relatively recent changes in drainage patterns.  相似文献   

11.
Freshwater fishes often display a marked phylogeographic structure strongly associated with historical and ecological changes in the aquatic environment. Different ecological conditions in the same river drainage may act as permeable barriers to dispersion and gene flow. Previous studies recognized two discrete spatial components for the ichthyofauna in the freshwater coastal drainages of southern Brazil: the lowland fish fauna in the lagoons and the fish fauna of the rivers flowing in the valleys. In order to test if the coastal lagoons may limit the dispersion of a riverine species, we describe the phylogeographic structure among populations of Cyanocharax itaimbe, a species endemic to this region. We analysed 55 specimens characterized for two mitochondrial and one nuclear genes. Sequences were analysed using gene trees and species tree approaches, together with standard population genetics methods. Molecular analyses indicated three evolutionary groups which diverged from each other between an estimated 1,600,000 and 450,000 years before the present. However, two currently isolated river systems share the same evolutionary clade, whereas a single drainage contains two different lineages. Our results indicate strong genetic structure among populations along with generally conserved morphology. The strong genetic structure among populations living in the same drainage system may be explained by ecological differences between lagoons and rivers (or palaeochannels) that act as barriers to dispersion.  相似文献   

12.
1. The Bliss Rapids snail is a federally listed yet poorly known small caenogastropod which lives in the Snake River drainage (main stem river and spring‐fed tributaries) of south‐central Idaho. The construction of three large dams along this portion of the Snake River during the 20th century is thought to have fragmented a single, ancestral population of this species into genetically isolated subunits that are vulnerable to extinction. We assessed variation of 11 microsatellite loci within and among 29 samples (820 snails) from across the entire range of the Bliss Rapids snail to assess genetic structure and test whether habitat fragmentation resulting from dam construction has impacted population connectivity. 2. The overall FST (0.15133, P < 0.05) and pairwise comparisons among samples (384/406 significant) indicated extensive population subdivision in general. A consistent trend of isolation by distance trend was not detected by Mantel tests. We found no evidence of reduced genetic diversity attributable to segmentation of the Snake River, and genetic variation among portions of drainage separated by the dams was not significant. Population structuring in spring–tributary habitats was considerably greater than in the main stem river as evidenced by differences in FST (0.18370, 0.06492) and the number of private alleles detected (16, 4), and by the results of an assignment test (69.4%, 58.7% correctly classified to sample of origin) and Bayesian genetic clustering algorithm. 3. Our results provide no evidence that dam construction has genetically impacted extant populations of the Bliss Rapids snail. We speculate that the generally weaker genetic structuring of riverine populations of this species is a result of passive dispersal within the water column, which may enable occasional passage through the dams. The somewhat stronger structuring observed in a portion of the river (Shoshone reach) which receives discharge from many springs may be due to local mixing of main stem and more highly differentiated tributary populations. Our findings parallel recent, genetically based studies of other western North American freshwater gastropods that also demonstrate complex population structure that conflicts with traditional concepts of dispersal ability and sensitivity to putative barriers.  相似文献   

13.
Rivers on the Balkan Peninsula can be separated into ichthyofaunistic areas with different endemic fish species. The Vardar River contains a particularly large number of endemics, indicating its complete and long‐term isolation from neighbouring river systems. One of the few species shared with other rivers is the loach species Oxynoemacheilus bureschi. In this study, the genetic analyses of 175 individuals of O. bureschi from 17 sites, covering the entire distribution of the species, including the Rivers Vardar (= Axios), Struma (= Strymon), Mesta (= Nestos) and Danube, were performed using one mitochondrial and one nuclear marker. Genetic differentiation among populations was in general low. Shared haplotypes were common and occurred even between distant localities and different river systems. This points to a high degree of gene flow among populations and rejects the hypothesis that the population in the Vardar River represents a relict from an early colonization of the Balkan Peninsula. In contrast, the results suggest that populations in the Vardar River, as well as those in the Danube River, are of recent origin, and a human‐mediated introduction cannot be excluded. On the other hand, the populations in the Aggitis River, a left tributary of the lower Struma River, were clearly separated from the rest of the species and represent a long‐term isolated lineage. Demographic analyses suggest a recent population expansion for O. bureschi, in which the population in the Aggitis River was not involved.  相似文献   

14.
River capture is potentially a key geomorphological driver of range expansion and cladogenesis in freshwater-limited taxa. While previous studies of freshwater fish, in particular, have indicated strong relationships between historical river connections and phylogeographic pattern, their analyses have been restricted to single taxa and geological hypotheses were typically constructed a posteriori. Here we assess the broader significance of river capture among taxa by testing multiple species for the genetic signature of a recent river capture event in New Zealand. During the Quaternary an upper tributary of the Clarence River system was diverted into the headwaters of the Wairau River catchment. Mitochondrial DNA (control region and cytochrome b) sequencing of two native galaxiid fishes (Galaxias vulgaris and Galaxias divergens) supports headwater exchange: populations from the Clarence and Wairau Rivers are closely related sister-groups, whereas samples from the geographically intermediate Awatere River are genetically divergent. The upland bully Gobiomorphus breviceps (Eleotridae), in contrast, lacks a genetic signature of the capture event. We hypothesize that there is an increased likelihood of observing genetic signatures from river capture events when they facilitate range expansion, as is inferred for the two galaxiid taxa studied here. When river capture merely translocates genetic lineages among established populations, by contrast, we suggest that the genetic signature of capture is less likely to be retained, as might be inferred for G. breviceps. Rates of molecular evolution calibrated against this recent event were elevated relative to traditional estimates, consistent with the contribution of polymorphisms to branch lengths at shallow phylogenetic levels prior to fixation by purifying selection and drift.  相似文献   

15.
Range expansion of obligate freshwater fishes in the Cape Floristic Region (CFR) of South Africa has mostly been attributed to river capture events and confluence of rivers following sea‐level regression. The role of low drainage divides and interbasin water transfers has received less attention. This study analyzed mitochondrial and nuclear DNA sequences to assess the processes that could have influenced the phylogeographic patterns of a newly discovered lineage of Galaxias zebratus (hereafter Galaxias zebratus “Joubertina”) that occurs across two currently isolated river systems close to the Joubertina area in the eastern CFR. Results from both analyses revealed that observed genetic differentiation cannot be explained by isolation between the two river systems. No genetic differentiation was found between the Krom River system and a population from one of the Gamtoos tributaries. Shallow genetic differentiation was found between the Krom and the other Gamtoos populations. Historical river capture events and sea‐level changes do not explain the present distribution of Galaxias zebratus “Joubertina” across the Krom and Gamtoos River systems. Interbasin dispersal during pluvial periods, recent river capture, or recent human‐mediated translocation seems to be the most plausible explanations.  相似文献   

16.
We examined genetic structure and levels of connectivity among subpopulations within each of four cryptic species belonging to the freshwater mussel genus Velesunio. We used allozymes and a fragment of the mitochondrial cytochrome c oxidase I gene to examine genetic variation in populations from isolated waterholes, belonging to four major inland drainages in eastern Australia. Based on evidence from other invertebrates in the region we predicted that, in each species, we would find evidence of historical connectivity among populations from different drainages. This was clearly not the case, as for the two species that occurred in more than one drainage there was evidence of both current and past restriction to gene flow. Moreover, given the potential for extensive dispersal of these mussels through the river systems during flood times via their fish hosts, we predicted low levels of genetic variation among populations from waterholes in the same drainage. Contrary to our expectations, all four species showed some evidence of restricted gene flow among waterholes within drainages. This suggests that either (a) mussel larvae are not produced during flood times, when their fish hosts would be free to move between waterholes, or (b) mussel larvae are attached to their hosts at these times, but the fish movement is limited between waterholes.  相似文献   

17.
The genetic variation within four Labeobarbus polylepis populations from both river and dam environments in the Limpopo, Incomati and Phongolo River systems was studied. Gene products of 22 enzyme-coding loci were resolved using horizontal starch gel electrophoresis. Fourteen (64%) of the 22 loci were monoallelic in all populations. Levels of polymorphism (P0.95) ranged between 9.1% and 22.7%. The heterozygosity varied from 0.028 for the Westoe Dam population (Phongolo River system) to 0.093 in the Spekboom River population (Limpopo River system). The genetic distance, FST and NEM values, as well as pair-wise contingency χ2 analyses indicate a lack of gene flow between populations, as expected for isolated fish. Evidence of foreign genetic material in one population was also observed.  相似文献   

18.
The genetic analysis of Brachyplatystoma platynemum individuals sampled from the lower Madeira River reinforces the existence of two structured populations in the Amazon Basin (Madeira and Amazon populations). However, the recapture of an individual from the Amazon population in the Solimões River, which was telemetry-tagged in the Madeira River after the damming, indicates that fish from the Amazon population move between the two river systems. This has not yet been observed, however, in the Madeira River population, which is currently divided and isolated in the lower and upper Madeira River by the construction of two dams.  相似文献   

19.
R. Li  W. Chen  L. Tu  & J. Fu 《Journal of Zoology》2009,277(4):309-316
At high altitude, rivers may function as barriers for amphibians. We examined 21 populations of Scutiger boulengeri from the Hengduan Mountains with 1038 base pairs of mitochondrial cytochrome b gene sequences. The haplotypes of S. boulengeri formed three clades on the gene tree, and each clade was restricted to one mountain ridge separated by two major river systems, the Yalong River and the Dadu River. The vicariant pattern of the gene tree suggests that these rivers functioned as effective barriers during population differentiation. On the other hand, mountain ridges may have facilitated amphibian movement. Populations within the uninterrupted mountain ranges of clades II and III, revealed little genetic structure. The northern clade I, harboured a substantial amount of genetic variation, which might be the consequence of the rugged terrain and heterogeneous habitat of this area. Furthermore, one outgroup species, Scutiger glandulatus , formed the fourth clade and nested within S. boulengeri , suggesting that S. boulengeri is likely a paraphyletic species or a species complex.  相似文献   

20.
1. Episodic floods and extended low or no flow periods characterise dryland river systems in Western Queensland, Australia. During protracted intervals between floods, rivers consist of a series of isolated waterholes, which serve as ‘refugia’ for aquatic species and much of the channel is dry. We categorised these waterholes into ‘main waterholes’, which are located in the main part of the river channel and ‘satellite waterholes’, which are located in distributary river channels. 2. We used mitochondrial sequences and allozymes to investigate levels of genetic diversity and patterns of connectivity among waterholes for two obligate freshwater species: Macrobrachium australiense (Decapoda: Palaemonidae) and Notopala sublineata (Gastropoda: Viviparidae). 3. We sampled 31 waterholes for M. australiense and 12 for N. sublineata. Based on a 505‐bp fragment of cytochrome oxidase subunit I, we identified 54 haplotypes in a sample of 232 individuals for M. australiense and based on a 457‐bp fragment of the same gene, 36 haplotypes in a sample of 145 individuals for N. sublineata. 4. Both nuclear and mitochondrial genetic data sets indicated that estimates of genetic diversity were not different in populations inhabiting main and satellite waterholes for either species. Also, there was generally very limited genetic differentiation among populations at any site. 5. We suggest that levels of connectivity among populations inhabiting waterholes at most sites are higher than expected. High levels of connectivity may help to maintain overall high levels of genetic diversity as well as low levels of genetic differentiation among waterholes within sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号