首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
Isolated nucleoli, nucleolar chromatin, and nucleolar DNA were used as templates for DNA synthesis in appropriately supplemented systems in which RNA polymerases other than RNA polymerase I were blocked by alpha-amanitin. With the aid of nucleotide analysis, DNA-RNA hybridization, and homochromatography fingerprinting, it was found that isolated nucleoli and nucleolar chromatin serve primarily as templates for synthesis of rRNA. However, the products formed with purified nucleolar DNA as a template do not contain the specific rRNA oligonucleotides nor are they appreciably hybridized to the rDNA region on cesium chloride gradients. These results indicate that whole nucleoli and nucleolar chromatin contain control mechanisms that restrict readouts by RNA polymerase I of nucleolar DNA to rDNA.  相似文献   

4.
5.
6.
7.
Neurospora crassa ribosomes contain a species of ribonucleic acid (RNA) of molecular weight 54,000, similar to 5.8S ribosomal RNA previously described for other eukaryotic organisms. The 5.8S RNA from N. crassa was found to be released by heat treatment at 60 C from 25S ribosomal RNA but not from 18S ribosomal RNA. The base composition of N. crassa 5.8S RNA was similar to that of 5.8S RNA from Saccharomyces cerevisiae, but differed from animal 5.8S RNA. During the course of this study, it was discovered that N. crassa 25S ribosomal RNA had a number of internal cleavages that may exist in vivo.  相似文献   

8.
9.
10.
Rat liver nuclei were fractionated into chromatin and nucleolar fractions. Chromatin DNA, which does not form hybrids with rRNA, was, nevertheless, able to hybridize with 32P-labelled total nucleolar RNA. The optimal temperature for this hybridization was 55 degrees C when the reaction was carried out in 2 X SSC (0.3 MnaCl + 0.3 M-sodium citrate). The hybrids formed were specific, as judged by analysis of thermal elution profiles. The low Tm (73 degreesC) observed could be explained by the low amount of DNA in the filters. The lenth of the hybridized sequences was extimated as 54 mucleotide pairs. Contamination to nucleolar RNA by nucleoplasmic RNA was ruled out by showing the former was able to form more hybrids than the latter. Competition experiments showed that hybridization of nucleolar RNA, although not competed with by rRNA, suffered pronounced competition from total microsomal RNA, even though the levels of competition obtained did not equal thsoe with cold nucleolar RNA as competitor.  相似文献   

11.
The RNA of the blue-green alga Anacystis nidulans contains three ribosomal RNA species with molecular weights of 0.56x10(6), 0.9x10(6), and 1.1x10(6) if the RNA is extracted in the absence of Mg(2+). The 0.9x10(6)mol.wt. rRNA is extremely slowly labelled in (32)P-incorporation experiments. This rRNA may be a cleavage product of the 1.1x10(6)mol.wt. rRNA from the ribosomes of cells in certain physiological states (e.g. light-deficiency during growth). The cleavage of the 1.1x10(6)mol.wt. rRNA during the extraction procedure can be prevented by the addition of 10mm-MgCl(2). (32)P-pulse-labelling studies demonstrate the rapid synthesis of two ribosomal precursor RNA species. One precursor RNA migrating slightly slower than the 1.1x10(6)mol.wt. rRNA appears much less stable than the other precursor RNA, which shows the electrophoretic behaviour of the 0.7x10(6)mol.wt. rRNA. Our observations support the close relationship between bacteria and blue-green algae also with respect to rRNA maturation. The conversion of the ribosomal precursor RNA species into 0.56x10(6)- and 1.1x10(6)-mol.wt. rRNA species requires Mg(2+) in the incubation medium.  相似文献   

12.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

13.
14.
15.
16.
17.
rRNA from detergent-purified nuclei was fractionated quantitatively, by two independent methods, into nucleolar and nucleoplasmic RNA fractions. The two RNA fractions were analysed by urea/agar-gel electrophoresis and the amount of pre-rRNA (precursor of rRNA) and rRNA components was determined. The rRNA constitutes 35% of total nuclear RNA, of which two-thirds are in nucleolar RNA and one-third in nucleoplasmic RNA. The identified pre-rRNA components (45 S, 41 S, 39 S, 36 S, 32 S and 21 S) are confined to the nucleolus and constitute about 70% of its rRNA. The remaining 30% are represented by 28 S and 18 S rRNA, in a molar ratio of 1.4. The bulk of rRNA in nucleoplasmic RNA is represented by 28 S and 18 S rRNA in a molar ratio close to 1.0. Part of the mature rRNA species in nucleoplasmic RNA originate from ribosomes attached to the outer nuclear membrane, which resist detergent treatment. The absolute amount of nuclear pre-rRNA and rRNA components was evaluated. The amount of 32 S and 21 S pre-rRNA (2.9 x 10(4) and 2.5 x 10(4) molecules per nucleus respectively) is 2-3-fold higher than that of 45 S, 41 S and 36 S pre-rRNA.  相似文献   

18.
Green leaves of the broad bean (Vicia faba) contain two 5S RNA components that can be separated from each other by polyacrylamide-gel electrophoresis. The major component is located in the larger subunit of cytoplasmic ribosomes, whereas the minor component occurs in the larger subunit of chloroplast ribosomes. Their electrophoretic mobilities relative to those of Escherichia coli 5S RNA (120 nucleotides) and plant 4S RNA (78 nucleotides) suggest that they consist of 118 and 122 nucleotide residues respectively. Thermal ;melting' profiles of plant cytoplasmic and chloroplast 5S RNA species at 260nm indicate the similarity of their secondary structures, not only to each other, but also to those of E. coli and mammalian 5S RNA species. The base compositions of the two plant 5S RNA species have more in common with each other than with the corresponding molecules from either E. coli or mammalian cells.  相似文献   

19.
The maturation of pre-rRNA (precursor to rRNA)in liver nuclei is studied by agar/ureagel electrophoresis, kinetics of labelling in vivo with [14C] orotate and electron-microscopic observation of secondary structure of RNA molecules. (1) Processing starts from primary pre-rRNA molecules with average mol. wt. 4.6X10(6)(45S) containing the segments of both 28S and 18S rRNA. These molecules form a heterogeneous peak on electrophoresis. The 28S rRNA segment is homogeneous in its secondary structure. However, the large transcribed spacer segment (presumably at the 5'-end) is heterogeneous in size and secondary structure. A minor early labelled RNA component with mol.wt. about 5.8X10(6) is reproducibly found, but its role as a pre-rRNA species remains to be determined. (2) The following intermediate pre-rRNA species are identified: 3.25X10(6) mol.wt.(41S), a precursor common to both mature rRNA species ; 2.60X10(6)(36S) and 2.15X10(6)(32S) precursors to 28S rRNA; 1.05X10(6) (21S) precursor to 18S rRNA. The pre-rRNA molecules in rat liver are identical in size and secondary structure with those observed in other mammalian cells. These results suggest that the endonuclease-cleavage sites along the pre-rRNA chain are identical in all mammalian cells. (3) Labelling kinetics and the simultaneous existence of both 36S and 21S pre-rRNA reveal that processing of primary pre-rRNA in adult rat liver occurs simultaneously by at least two major pathways: (i) 45S leads to 41S leads to 32S+21S leads to 28S+18S rRNA and (ii) 45S leads to 41S leads to 36S+18S leads to 32S leads to 28S rRNA. The two pathways differ by the temporal sequence of endonuclease attack along the 41 S pre-rRNA chain. A minor fraction (mol.wt.2.9X10(6), 39S) is identified as most likely originating by a direct split of 28S rRNA from 45S pre-rRNA. These results show that in liver considerable flexibility exists in the order of cleavage of pre-rRNA molecules during processing.  相似文献   

20.
Molecular integrity of chloroplast ribosomal ribonucleic acid   总被引:8,自引:2,他引:6  
The majority of chloroplast 1.1x10(6)-mol.wt. rRNA molecules are nicked at specific points in the polynucleotide chain, the molecules being kept intact at low temperatures by their secondary structure. Conditions that break hydrogen bonds and lead to loss of secondary structure cause dissociation of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号