首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song QX  Wei DZ  Zhou WY  Xu WQ  Yang SL 《Biotechnology letters》2004,26(23):1777-1780
L-Ascorbyl oleate and L-ascorbyl linoleate were synthesized by an immobilized lipase from Candida antarctica with yields of 38% and 44%, respectively. L-Ascorbyl oleate was stable in sterile culture medium over 12 h at 37 °C but L-ascorbyl linoleate degraded by 17%. Ascorbyl oleate had a better protective effect on human umbilical cord vein endothelial cells treated with H2O2 than of L-ascorbic acid-2-phosphate-6-palmitate (Asc2P6P).Revisions requested 21 July 2004/26 August 2004; Revisions received 20 August 2004/27 September 2004  相似文献   

2.
Incubation experiments using washed cells and toluene treated cells ofStreptomyces garyphalus showed that O-acetyl-L-serine and hydroxyurea are intermediates in the biosynthesis ofD-cycloserine. The formation of [14C]O-ureidoserine from O-acetyl-L-serine and hydroxyurea was demonstrated by incubating an enzyme solution with14C-labelled substrates. Desalted cell-free extract catalyzed the conversion of O-ureido-D-serine toD-cycloserine in a reaction requiring ATP and Mg2+. The results suggested the following pathway forD-cycloserine biosynthesis.  相似文献   

3.
The effects of limitating nitrogen-containing compounds in the medium and of adding the amino-acid analogues p-fluorophenylalanine and ethionine on both phenoloxidase activity and the accumulation of L-3,4-dihydroxyphenylalanine (L-DOPA) are reported for cell suspension cultures of Mucuna pruriens. Nitrogen limitation of the cultures, or the addition of p-fluorophenylalanine or ethionine to the culture medium resulted in an increased phenoloxidase activity. There appeared to be an inverse relationship between phenoloxidase activity and the acccumulation of L-tyrosine into L-DOPA by alginate-entrapped cells occurred at a higher rate when phenoloxidase activity was increased.Abbreviations pFPA p-fluorophenylalanine - L-DOPA L-3,4-dihydroxyphenylalanine  相似文献   

4.
The l-rhamnose isomerase gene (L -rhi) encoding for l-rhamnose isomerase (l-RhI) from Bacillus pallidus Y25, a facultative thermophilic bacterium, was cloned and overexpressed in Escherichia coli with a cooperation of the 6×His sequence at a C-terminal of the protein. The open reading frame of L -rhi consisted of 1,236 nucleotides encoding 412 amino acid residues with a calculated molecular mass of 47,636 Da, showing a good agreement with the native enzyme. Mass-produced l-RhI was achieved in a large quantity (470 mg/l broth) as a soluble protein. The recombinant enzyme was purified to homogeneity by a single step purification using a Ni-NTA affinity column chromatography. The purified recombinant l-RhI exhibited maximum activity at 65°C (pH 7.0) under assay conditions, while 90% of the initial enzyme activity could be retained after incubation at 60°C for 60 min. The apparent affinity (K m) and catalytic efficiency (k cat/K m) for l-rhamnose (at 65°C) were 4.89 mM and 8.36 × 105 M−1 min−1, respectively. The enzyme demonstrated relatively low levels of amino acid sequence similarity (42 and 12%), higher thermostability, and different substrate specificity to those of E. coli and Pseudomonas stutzeri, respectively. The enzyme has a good catalyzing activity at 50°C, for d-allose, l-mannose, d-ribulose, and l-talose from d-psicose, l-fructose, d-ribose and l-tagatose with a conversion yield of 35, 25, 16 and 10%, respectively, without a contamination of by-products. These findings indicated that the recombinant l-RhI from B. pallidus is appropriate for use as a new source of rare sugar producing enzyme on a mass scale production.  相似文献   

5.
Summary l-Galactose,d-arabinose, andl-fucose form six-membered rings with identical stereoconfigurations. However, onlyl-fucose can serve as the sole carbon and energy source of wild-typeEscherichia coli K-12. A mutant that can grow onl-galactose andd-arabinose was isolated by alternate selection on the two sugars. Thel-fucose pathway became inducible by all three sugars. Transduction into the mutant of the wild-type fuc+ region containing both the regulatory and structural genes abolished the novel growth abilities onl-galactose andd-arabinose, whereas transduction into the mutant of a fuc deletion abolished the growth abilities on all three sugars. Introduction of the wild-type fucR+ (which encodes the activator protein for the fuc regulon) on a multicopy plasmid depressed the growth abilities of the mutant onl-galactose andd-arabinose, but not onl-fucose. The results suggest that the effector specificity of the activator protein in the mutant was broadened. It is proposed that an adaptive response of an activator-controlled system is more likely than that of a repressor-controlled system to achieve fixation in a population, because the first variant to emerge in response to a novel metabolic demand has a good chance of having an altered specificity of regulation. Such a change entails little or no metabolic liability during the absence of the novel substrate. In contrast, the first variant of a negatively controlled system to emerge has an overwhelming chance of being the result of a random mutation that destroys repressor function. Although negatively controlled systems can be more opportunistic in exploiting new conditions than positively controlled systems, an adaptive change is less likely to become fixed because of the cost associated with gratuitous constitutive gene expression in the absence of the substrate.  相似文献   

6.
Summary We have previously shown that resistance to the -lactam mecillinam in Escherichia coli can be brought about by a high ppGpp pool, as observed under conditions of partial amino acid starvation and ReIA-dependent induction of the stringent response. We show here that our E. coli wild-type strain, which is sensitive to mecillinam on minimal glucose plates, becomes resistant in the presence of lleucine or L-serine (or cysteine, which inactivates the antibiotic). The resistance, which is not a transient effect and does not depend on the physiological state of the cells when plated, is specific for mecillinam and is reversed by the presence of isoleucine and valine in the medium. At least in the case of serine, the resistance is ReIA-dependent. We conclude that the presence of leucine and serine in the growth medium cause partial starvation for isoleucine/valine, leading to induction of the stringent response and concomitant resistance to mecillinam.  相似文献   

7.
Contact of mononuclear human leukocytes with cellulose dialysis membranes may result in complement-independent cell activation, i.e. enhanced synthesis of cytokines, prostaglandins and an increase in 2-microglobulin synthesis. Cellular contact activation is specifically inhibited by the monosaccharidel-fucose suggesting that dialysis membrane associatedl-fucose residues are involved in leukocyte activation. In this study we have detected and quantitatedl-fucose on commercially-available cellulose dialysis membranes using two approaches. A sensitive enzymatic fluorescence assay detectedl-fucose after acid hydrolysis of flat sheet membranes. Values ranged from 79.3±3.6 to 90.2±5.0 pmol cm–2 for Hemophan® or Cuprophan® respectively. Enzymatic cleavage of terminal -l-fucopyranoses with -l-fucosidase yielded 7.7±3.3 pmoll-fucose per cm2 for Cuprophan. Enzymatic hydrolysis of the synthetic polymer membranes AN-69 and PC-PE did not yield detectable amounts ofl-fucose. In a second approach, binding of the fucose specific lectins ofLotus tetragonolobus andUlex europaeus (UEAI) demonstrated the presence of biologically accessiblel-fucose on the surface of cellulose membranes. Specific binding was observed with Cuprophan®, and up to 2.6±0.3 pmoll-fucose per cm2 was calculated to be present from Langmuir-type adsorption isotherms. The data presented are in line with the hypothesis that surface-associatedl-fucose residues on cellulose dialysis membranes participate in leukocyte contact activation.  相似文献   

8.
In cell extracts of Rhodopseudomonas sphaeroides grown on meso-tartrate the activities of the bifunctional L(+)-tartrate dehydrogenase-D(+)-malate dehydrogenase (decarboxylating) (EC 1.1.1.93 and 1.1.1.83, respectively) could be measured spectrophotometrically but not the activity of a meso-tartrate dehydrogenase or dehydratase. However, an enzyme activity was detected manometrically that catalyzed the stoichiometric release of CO2 from mesotartrate in a molar ratio of 1:1. This reaction required catalytic amounts of NAD and the presence of both divalent (Mn2+ or Mg2+) and monovalent (NH 4 + or K+) cations. Purification of the meso-tartrate decarboxylase showed that it was part of the bifunctional L(+)-tartrate dehydrogenase-D(+)-malate dehydrogenase (decarboxylating), which thus possessed a third catalytic function. The homogeneous enzyme catalyzed the stoichiometric conversion of incso-tartaric acid to D(-)-glyceric acid and CO2. All interfering catalytic activities had been eliminated during the course of enzyme purification.  相似文献   

9.
The effect ofL-arginine, the precursor of nitric oxide, on ischemic dopamine release from the striatum was investigated in Mongolian gerbils subjected to bilateral carotid artery occlusion (15 min) alone or with reflow (2 h). Dopamine and its metabolites were measured in the striatal extracellular space dialysate after continuous perfusion (2 l/min) of artificial extracellular fluid in the presence or absence of 15 mmol/literL- orD-arginine or 1 mmol/liter nitro-L-arginine.L-Arginine but notD-arginine increased the striatal content of dopamine in pre- and postischemia whereas it lowered the levels of dopamine and 3-methoxytyramine induced by ischemia. In contrast, nitro-L-arginine reduced the preischemic levels of dopamine and 3,4-dihydroxyphenyl-acetic acid, and had no effect on the ischemic release of dopamine. These findings indicate thatL-arginine stereospecifically modified the ischemic release and metabolism of dopamine. The data also suggest that the basal level of nitric oxide is not involved in dopamine release during ischemia but may participate in regulating dopamine release under physiological conditions.Presented in part at the 19th International Joint Conference on Stroke and Cerebral Circulation, San Diego, California, February 17–19, 1994.  相似文献   

10.
Phaeodactylum tricornutum Bohlin grew well withL-methionine-DL-sulfoximine (MSX) as sole nitrogen source. Such growth helps to explain the lack of effect of MSX on ammonium assimilation by this organism. Methylammonium inhibited growth with nitrate or MSX as sole nitrogen source but not growth on ammonium. Methylammonium could not be metabolised byP. tricornutum but was accumulated in the cells, the concentration factor sometimes approaching 25,000. Ammonium addition, but not that of MSX or nitrate, displaced methylammonium from the cells and this displacement was followed by resumption of growth. Both methylammonium and ammonium inhibited the uptake of nitrate and nitrite by the cells but inhibition by methylammonium, in comparison with that by ammonium, required a higher concentration and a longer time to develop. Inhibition by methylammonium is shown to be associated with its accumulation by the cells. Methylammonium also prevented the disappearance of nitrate from the interior of the cells (presumably by nitrate assimilation) whereas ammonium did not. It is concluded that methylammonium and ammonium differ in the ways in which they inhibit nitrate metabolism inP. tricornutum.Abbreviation MSX L-methionine-DL-sulfoximine  相似文献   

11.
Park CS  Yeom SJ  Kim HJ  Lee SH  Lee JK  Kim SW  Oh DK 《Biotechnology letters》2007,29(9):1387-1391
The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted d-psicose into d-allose but it did not convert d-xylose, l-rhamnose, d-altrose or d-galactose. The production of d-allose by RpiB was maximal at pH 7.5 and 65°C for 30 min. The half-lives of the enzyme at 50°C and 65°C were 96 h and 4.7 h, respectively. Under stable conditions of pH 7.5 and 50°C, 165 g d-allose l1 was produced without by-products from 500 g d-psicose l−1 after 6 h.  相似文献   

12.
The lead ion-catalyzed oligomerization of 5′-phosphorimidazolides of D-, L- or racemic DL-adenosine (D-ImpA, L-ImpA and DL-ImpA) gave oligoadenylates up to a pentamer. The oligomers resulting from racemic ImpA were comparable in yields and length to those from chiral D- or L-ImpA. A complex mixture of homochiral and heterochiral oligomers was formed in the reaction from racemic ImpA. Total dimer product from racemic ImpA by the lead ion catalyst showed homochiral selectivity. The reaction catalyzed by uranyl ion yielded oligoadenylates up to 15mer from chiral D- or L-ImpA in over 95% yield. A complex mixture of isomeric oligoadenylates was formed from racemic DL-ImpA in the presence of uranyl ion catalyst in comparable yields to those from D- or L-ImpA. The analysis of the dimer product from DL-ImpA showed that the homochiral 2′ –5′ linked dimer was selectively formed. D-ImpA polymerized effectively on a poly(U) template, which is exclusively composed of D-uridine, yielding oligoadenylates up to a pentamer. In contrast, L-ImpA or racemic DL-ImpA polymerized far less efficiently on the poly(U) template, demonstrating that chiral selection takes place in the poly(U) template-directed oligoadenylate formation.  相似文献   

13.
The yeast Candida maltosa can utilize L-lysine as sole nitrogen and sole carbon source accompanied by accumulation of -N-acetyl-L-lysine, indicating that lysine is metabolized by way of N-acetylated intermediates. A novel lysine acetyltransferase catalyzing the first step in this pathway, the N-acetylation of the -amino group of L-lysine, was found in this yeast. The enzyme, acetyl-CoA:L-lysine N-acetyltransferase, is strongly induced in cells grown on L-lysine as sole carbon source. The enzyme is specific for both L-lysine and acetyl-CoA. The K m values are 10 mM for L-lysine and 0.33 mM for acetyl-CoA. The enzyme has a maximum activity at pH 8.1.Dedicated to Prof. Dr. F. Böttcher in occasion of his 60th birthday  相似文献   

14.
Cell-free extracts of d-fructose grown cells of Pseudomonas putida, P. fluorescens, P. aeruginosa, P. stutzeri, P. mendocina, P. acidovorans and P. maltophila catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose and contained 1-P-fructokinase activity suggesting that in these species fructuse-1-P and fructose-1,6-P2 were intermediates of d-fructose catabolism. Neither the 1-P-fructokinase nor the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose was present in significant amounts in succinate-grown cells indicating that both activities were inducible. Cell-free extracts also contained activities of fructose-1,6-P2 aldolase, fructose-1,6-P2 phosphatase, and P-hexose isomerase which could convert fructose-1,6-P2 to intermediates of either the Embden-Meyerhof pathway or Entner-Doudoroff pathway. Radiolabeling experiments with 1-14C-d-fructose suggested that in P. putida, P. aeruginosa, P. stutzeri, and P. acidovorans most of the alanine was made via the Entner-Doudoroff pathway with a minor portion being made via the Embden-meyerhof pathway. An edd - mutant of P. putida which lacked a functional Entner-Doudoroff pathway but was able to grow on d-fructose appeared to make alanine solely via the Embden-Meyerhof pathway.Non-Standard Abbreviations cpm counts per min - edd - mutant lacking Entner-Doudoroff dehydrase (6-PGA dehydrase) - EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTs PEP: d-fructose phosphotransferase system - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

15.
The effects of N-nitro-L-arginine (L-NOARG) and NG-monomethyl-L-arginine (L-NMMA) on the spatialdistribution of diaphragmatic microvascular blood flow were assessed in anesthetized, mechanically ventilated rats. Microvascular blood flow was measured after different periods at either a fixed site (Qstat) or 25 different sites (Qscan) using computer-aided laser-Doppler flowmetry (LDF) scanning. The value of Qstat was unaffected after 15–20 min superfusion with any one of the following agents: L-NOARG (0.1 mM), L-NMMA (0.1 mM), L-arg (10 mM). The cumulative frequency histogram of the Qscan value in the control group displayed a non-Gaussian distribution that was not significantly affected after 15 min superfusion with the vehicle of L-NOARG. Superfusion with either L-NMMA or L-NOARG at 0.1 mM for 15 min displaced the histogram of cumulative frequency to the left, with the median value of blood flow decreasing by 10 to 20%. However, skewness and kurtosis of the distribution of basal Qscan were unaffected after superfusion of either of the L-arg analogues. Pretreatment with L-arg (10 mM), followed by co-administration of L-arg (10 mM) with L-NOARG (0.1 mM) only partially prevented L-NOARG from exerting this inhibitory effect on the distribution of basal Qscan, while pretreatment with L-arg in the same manner could prevent L-NMMA from exerting its inhibitory effect. There was a weak but significant linear relationship between the magnitude of basal Qscan and normalized changes in basal Qscan after superfusion of either of the L-arg analogues. In conclusion, a basal NO activity is present in the diaphragmatic microvascular bed of rats. LDF scanning rather may yield more vivid information about the extent of overall tissue perfusion than conventional LDF whenever basal NO activity is involved. Moreover, the parallel flow profiles after NO synthase blockade suggest that the spatial inhomogeneity of basal diaphragmatic microvascular blood flow is not dependent on basal NO formation.  相似文献   

16.
l-arabinose isomerase (EC5.3.1.4. AI) mediates the isomerization of d-galactose into d-tagatose as well as the conversion of l-arabinose into l-ribulose. The AI from Lactobacillus plantarum SK-2 was purified to an apparent homogeneity giving a single band on SDS–PAGE with a molecular mass of 59.6 kDa. Optimum activity was observed at 50°C and pH 7.0. The enzyme was stable at 50°C for 2 h and held between pH 4.5 and 8.5 for 1 h. AI activity was stimulated by Mn2+, Fe3+, Fe2+, Ca2+ and inhibited by Cu2+, Ag+, Hg2+, Pb2+. d-galactose and l-arabinose as substrates were isomerized with high activity. l-arabitol was the strongest competitive inhibitor of AI. The apparent Michaelis–Menten constant (K m), for galactose, was 119 mM. The first ten N-terminal amino acids of the enzyme were determined as MLSVPDYEFW, which is identical to L. plantarum (Q88S84). Using the purified AI, 390 mg tagatose could be converted from 1,000 mg galactose in 96 h, and this production corresponds to a 39% equilibrium.  相似文献   

17.
N-Acyl-D-glutamate amidohydrolase (D-AGase) was inhibited by 94 % when 1 mol/l N-acetyl-DL- glutamate was used as a substrate. The addition of 1 mM Co2+ stabilized D-AGase. Moreover, the substrate inhibition was weakened to 88% with the addition of 0.4 mM Co2+ to the reaction mixture. Although D-AGase is a zinc-metalloenzyme, the addition of Zn2+ from 0.01 to 10 mM did not increase the D-glutamic acid production in the saturated substrate. Under optimal conditions, 0.38 M D-glutamic acid was obtained from N-acyl-DL-glutamate with 100% of the theoretical yield after 48 h.  相似文献   

18.
Clostridium sphenoides was grown on glucose in a phosphate-limited medium. Below 80 M phosphate two new products were formed in addition to ethanol, acetate, H2 and CO2: d(-)-1,2-propanediol and d(-)-lactate. These compounds were apparently synthesized via the methylglyoxal by-pass. The activity of the enzymes involvedmethylglyoxal synthase, methylglyoxal reductase, 1,2-propanediol dehydrogenase and glyoxalase-could be demonstrated in cell extracts of C. sphenoides. The formation of 1,2-propanediol from methylglyoxal proceeded via lactaldehyde. The enzyme methylgloxal synthase was inhibited by phosphate. Clostridium glycolicum, C. nexile, C. cellobioparum, C. oroticum and C. indolis did not produce propanediol under the condition of phosphate limitation. The latter two species, however, formed d(-)-lactate.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

19.
We investigated whether or not lettuce growth was inhibited by diffused L-3-(3,4-dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from the roots of velvetbean (Mucuna pruriens (L.) DC. var. utilis) cultivars using a modified plant-box bioassay. For all the cultivars and one accession examined L-DOPA diffused from the roots and caused radicle and hypocotyl growth inhibition. A high correlation co-efficient (r = 0.838 to 0.982) was observed between L-DOPA concentration and lettuce seed sowing distance. L-DOPA diffused equally in all directions from roots at 0 mm position (close to root surface) in the plant-box, while the inhibition (%) of lettuce radicle growth gradually decreased with distance from the roots. For all cultivars the concentration of L-DOPA was significantly different at 0 mm position: being highest in cv. preta (167 g/ml) and lowest in cv. jaspeada and cv. ana (13 g/ml). The correlation between lettuce radicle growth inhibition and concentration of diffused L-DOPA was high (r = 0.856 to 0.966) in all cultivars and accession examined. However, the concentration of diffused L-DOPA did not correlate with the fresh weight concentration of L-DOPA measured in roots. The lettuce radicle growth inhibition from mucuna diffused L-DOPA was very similar that induced by synthetic L-DOPA, suggesting that diffused L-DOPA was the allelochemical responsible for growth inhibition.  相似文献   

20.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 1018 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号