首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using nondegradative isolation procedures we purified and characterized five major noncollagenous proteins from developing human bone. Small bone proteoglycan I, Mr approximately 350,000 on sodium dodecyl sulfate (SDS), 4-20% gradient polyacrylamide gels has a different amino-terminal sequence of NH2-Asp-Glu-Glu-()-Gly-Ala-Asp-Thr and is not cross-reactive with the small bone proteoglycan II, Mr approximately 200,000 on SDS-gradient polyacrylamide gels. Bone proteoglycan II is 95% N terminally blocked and the small amount that can be sequenced has an amino-terminal sequence (NH2-Asp-Glu-Ala-()-Gly-Ile. . .) that is apparently similar but not identical to a small proteoglycan isolated by Brennan, M.J., Oldberg, A., Pierschbacher, M.D., and Ruoslahti, E. (1984) J. Biol. Chem. 259, 13742-13750 from human fetal placenta membrane. Two bone sialoproteins, each of which migrates at a Mr approximately 80,000 on SDS gels, have also been isolated. Bone sialoprotein I has an amino-terminal sequence of NH2-Ile-Pro-Val-Lys-Gln-Ala. . . which is different from that of bone sialoprotein II with an amino-terminal sequence of NH2-Phe-Ser-Met-Lys-Asn-Leu. . . The two bone sialoproteins do not cross-react on Western blot analysis. Human bone osteonectin contains a large number of cysteines, more than 90% of which appear to be in disulfide bonds. The N-terminal amino acid sequence of human bone osteonectin was nearly identical to bovine bone osteonectin and had many similarities to a protein found in mouse parietal endoderm (Mason, I.J., Taylor, A., Williams, J.G., Sage, H., and Hogan, B.L.M. (1986) EMBO J. 5, 1831-1837.  相似文献   

2.
Proteoglycans of developing bone   总被引:17,自引:0,他引:17  
We purified and characterized the bone proteoglycans from fetal calves, growing rats, and human fetuses. The major proteoglycan is part of the mineralized tissue matrix and only 10-20% can be extracted prior to demineralization. This bone proteoglycan is a small glycoconjugate (Mr = 80,000-120,000) containing approximately 20-30% protein and either one or two chondroitin sulfate chains (Mr = 40,000) attached to a relatively monodisperse protein core (Mr = 38,000). "O"-linked and "N"-linked oligosaccharide units are also present. Antibodies directed against the protein core of calf bone proteoglycan do not cross-react with cartilage, skin, corneal, or basement membrane proteoglycans in immunoassays and have minimal cross-reactivity with scleral proteoglycans. Quantitative immunoassays and indirect immunofluorescence were used to show that the molecule is localized to forming bone trabeculae and dentin, but not to any other tissue. Osteoblasts and osteoprogenitor cells adjacent to areas undergoing rapid osteogenesis also contain this small proteoglycan. A second proteoglycan (Mr approximately equal to 1,000,000) was extracted from newly forming bone prior to demineralization. This large proteoglycan, which was isolated from the cartilage-free areas of developing intramembranous bone, has a protein core similar to that of the cartilage aggregating proteoglycan and cross-reacts with antisera raised against these cartilage proteoglycans but not with the small mineral-entrapped proteoglycan. It contains larger (Mr = 40,000) and fewer chondroitin sulfate chains than its cartilage-derived analogue, and is localized to the soft connective tissue mesenchyme lying between growing bone trabeculae. More fully formed compact bone did not contain detectable quantities of this proteoglycan.  相似文献   

3.
Demineralizing extracts of porcine bone contain two large 66-80-kDa sialoproteins and smaller 20- and 23-kDa glycoproteins with similar chemical properties. Each protein was characterized following extraction from fetal calvariae and purification under dissociative conditions using Sepharose CL-6B, followed by fast protein liquid chromatography fractionation on hydroxyapatite and Mono Q resins. Unlike the large sialoproteins, the 20- and 23-kDa glycoproteins did not contain sialic acid. Nevertheless, affinity-purified antibodies raised against the 23-kDa protein recognized both the 20-kDa protein and a 67-kDa sialoprotein on immunoblots. These antibodies also immunoprecipitated a 60-kDa [35S]methionine-labeled protein produced by cell-free synthesis of calvarial bone mRNA, indicating that the smaller proteins were derived from the 67-kDa protein. The two sialoproteins were shown by primary sequence analysis to be secreted phosphoprotein I (SPPI, osteopontin, bone sialoprotein I) and bone sialoprotein (BSP, bone sialoprotein II). The SPPI was also characterized by its susceptibility to thrombin which produced a 23-kDa fragment, similar to the glycoprotein isolated, and a 30-kDa fragment. Amino-terminal sequence analysis of the 23- and 20-kDa proteins revealed that these proteins were derived from the carboxyl-terminal half of the SPPI molecule, the proteins showing 58% identity with human and rat, and 50% identity with mouse, SPPI sequences. Both the 23- and 20-kDa proteins appeared to be generated by the activity of an endogenous trypsin-like protease that cleaves at Arg-Ser (residues 155-156) and Lys-Ala (residues 182-183) bonds. Radiolabeling studies performed in vitro showed that the 23-kDa fragment was detectable in mineralized tissue within 4 h. The fragment was phosphorylated but, unlike SPPI, was not sulfated. The rapid generation of the 23-kDa glycoprotein and its presence in different bone tissues at different developmental stages indicate that the fragmentation of SPPI is important in bone formation and remodeling.  相似文献   

4.
A monoclonal antibody was raised against a mineralized tissue-specific sialoprotein containing no phosphorus using partially purified noncollagenous bone matrix proteins from rats as antigen. Then the sialoprotein was purified by high performance liquid chromatography from rat mandibulae using the monoclonal antibody as a marker. The sialoprotein (59-kDa bone sialoprotein (BSP)) with a molecular weight of 59,000 contained 1.4% sialic acid but no detectable phosphorus. Immunohistochemical studies with the antibody showed that the protein was specific to mineralized tissues such as bone and dentin, and present in osteoblasts, osteocytes, and bone matrix. No other soft tissues, such as the cartilage, liver, kidney, and periosteum, were stained. However, Western blot analysis showed that plasma contained immunoreactive 59-kDa BSP. The quantitative amino acid composition of 59-kDa BSP resembled that of human alpha 2-HS glycoprotein (alpha 2-HSG) (Lee, C.-C., Bowman, B.H., and Yang, F. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4403-4407; Kellermann, J., Haupt, H., Auerswald, E.-A., and Muller-Esterl, W. (1989) J. Biol. Chem. 264, 14121-14128) and rat 64-kDa protein (Franzén, A., and Heineg?rd, D. (1985) in The Chemistry and Biology of Mineralized Tissues (Butler, W.T., ed), p. 132, EBSCO Media, Birmingham, AL). Amino acid sequence analyses of the amino-terminal region and four peptide fragments of 59-kDa BSP revealed that about 50% of the amino acids were homologous with those of human alpha 2-HSG, which is known to be synthesized by the liver, transported in the bloodstream, and incorporated into calcified tissues. But when newborn rat calvaria, primary cultures of osteoblast-rich cells, and adult rat hepatocytes were incubated with radioactive leucine, immunoreactive 59-kDa BSP was detected in their conditioned medium by fluorography. Several characteristics, including the amino acid sequence, suggest that 59-kDa BSP may be the rat counterpart of human alpha 2-HSG. However, rat 59-kDa BSP is a single peptide and synthesized by both osteoblasts and hepatocytes, whereas human alpha 2-HSG is known to be a heterodimer and to be synthesized by the liver.  相似文献   

5.
Keratan sulfate proteoglycan in rabbit compact bone is bone sialoprotein II   总被引:4,自引:0,他引:4  
A keratan sulfate proteoglycan was isolated under denaturing conditions from the mineral compartment of rabbit cortical bone. This small proteoglycan (Kd = 0.39 on Superose 6, Mr approximately 20,000 on sodium dodecyl sulfate gels) contained small keratan sulfate chains that were distinctly bimodal in size. The keratanase and endo-beta-galactosidase digestible glycosaminoglycan chains were O-linked to a core protein of Mr approximately 80,000. This core protein had several properties in common with the bone sialoprotein II molecule of bovine and human bone including: a closely spaced doublet band on sodium dodecyl sulfate electrophoresis gels; a high staining intensity with Stains All that was greatly diminished by neuraminidase; a significant amount of small O-linked oligosaccharides; and an amino-terminal amino acid sequence that was nearly identical to human bone sialoprotein II. (In contrast, bone sialoprotein II in human, bovine, and rat bone does not appear to have any keratan sulfate chains.) Antiserum made against the keratan sulfate proteoglycan reacted with its core protein on electrotransfers from sodium dodecyl sulfate-polyacrylamide gels.  相似文献   

6.
The low density lipoprotein (LDL) receptor has been shown to be a plasma membrane glycoprotein responsible for the cellular binding and endocytosis of plasma lipoproteins. Inasmuch as the Golgi apparatus has been shown to participate in glycoprotein processing and in the assembly of plasma lipoproteins by hepatic and intestinal epithelial cells, the present studies were designed to test the hypothesis that lipoprotein receptors are present within Golgi membranes. Utilizing ligand blotting with a variety of iodinated lipoproteins, several lipoprotein-binding proteins were identified in rat liver Golgi membranes at apparent molecular weights (Mr) 200,000, 160,000, 130,000, 120,000, 100,000, 80,000, and 70,000. The 130,000 protein was the most prominent and was identified as the mature LDL receptor by its binding characteristics and an Mr characteristic of the plasma membrane receptor. Enzymatic deglycosylation studies suggested that the 120,000 and 100,000 proteins were LDL receptor precursors lacking sialic acid. Antibody to the LDL receptor recognized all the bands on immunoblots except the 70,000 protein, with the 130,000 protein being the most prominent. Isolation of the Golgi fractions in the presence of protease inhibitors did not eliminate any of the proteins recognized by the antibody but did result in sharper bands on the blots. Additionally, we investigated the hypothesis that conditions that regulate plasma membrane LDL receptors also cause detectable changes in receptors in Golgi membranes. All the binding proteins were increased in Golgi membranes from rats treated with 17-alpha-ethynylestradiol. Colchicine caused an accumulation of 120,000 Mr protein, suggesting blockage of final sialylation in the trans Golgi. When protein synthesis was inhibited by cycloheximide, there was no reduction of mature LDL receptors in Golgi membranes, consistent with recycling of receptors through this organelle.  相似文献   

7.
A soluble glycoprotein of Mr = 80,000 has been isolated from lung lavage of patients with alveolar proteinosis and found to contain 5 residues of hydroxyproline, 91 residues of glycine, 3 residues of methionine, 3.8 molecules of sialic acid, 6 molecules of mannose, 5.9 molecules of galactose, 1 molecule of fucose, and 9.1 molecules of glucosamine. Cyanogen bromide (CNBr) treatment of the glycoprotein resulted in four peptides with molecular weights of 36,000, 27,000, 12,000, and 5,000. The chemical compositions of the CNBr peptides indicated the presence of hydroxyproline and high amounts of glycine in all but one of the peptides; two of the four CNBr peptides contained carbohydrate. Limited trypsin digestion of the glycoprotein of Mr = 80,000 resulted in four peptides with molecular weights of 62,000, 36,000, 26,000 and 18,000, the latter being the NH2-terminal peptide of the native glycoprotein molecule. The peptide of Mr = 26,000 was found to be the COOH-terminal peptide.  相似文献   

8.
Summary Bone sialoprotein (BSP) is a prominent component of bone tissues that is expressed by differentiated osteoblastic cells. Affinity-purified antibodies to BSP were prepared and used in combination with biotin-conjugated peroxidase-labeled second antibodies to demonstrate the distribution of this protein in sections of demineralized foetal porcine tibia and calvarial bone. Staining for BSP was observed in the matrix of mineralized bone and also in the mineralized cartilage and associated cells of the epiphysis, but was not observed in the hypertrophic zone nor in any of the soft tissues including the periosteum. In comparison, SPP-1 (osteopontin) and SPARC (osteonectin), which are also major proteins in porcine bone, were observed in the cartilage as well as in the mineralized bone matrix, In addition, SPARC was also present in soft connective tissues. Although SPP-1 distribution was more restricted than SPARC, hypertrophic chondrocytes, periosteal cells and some stromal cells in the bone marrow spaces were stained in addition to osteoblastic cells. The variations in the distribution and cellular expression of BSP, SPARC and SPP-1 in bone and mineralizing cartilage indicate these proteins perform different functions in the formation and remodelling of mineralized connective tissues.  相似文献   

9.
Extracts of the mineralized phase of rat calvaria were shown to contain bone acidic glycoprotein-75, a new phosphorylated glycoprotein which co-purifies with small bone proteoglycans through anion-exchange chromatography. Final purification of each was brought about with a subsequent hydroxyapatite step. Bone acidic glycoprotein-75 is 75,000 in molecular weight with a 29.3% molar content of acidic amino acid residues, a 7.0% (w/w) content of sialic acid, and a 7.9% molar content of organic phosphate. Its N-terminal sequence was determined as Leu-Pro-Val-Ala-Arg-Tyr-Gln-Asn-Thr-Glu-Glu-Glu-Glu-. Because the size and charge density properties of bone acidic glycoprotein-75 are similar to those reported for rat bone sialoprotein II, calvarial sialoprotein II was also purified to homogeneity, and its amino acid composition and N-terminal sequence were determined. The sequence results showed an identity with the first 5 residues of human sialoprotein II and a complete lack of homology with bone acidic glycoprotein-75, which, furthermore, did not bind anti-sialoprotein II antibodies. Although the N-terminal sequence of bone acidic glycoprotein-75 appears to be unique, a 33% homology is shared with rat adhesive protein osteopontin. Affinity-purified antibodies against osteopontin were found to specifically bind to bone acidic glycoprotein-75 and to sialoprotein II upon immunoblotting, whether as purified proteins or as components of crude calvarial extracts. In summary, bone acidic glycoprotein-75 is a new phosphorylated glycoprotein from the mineralized compartment of rat calvarial tissue with a limited structural homology to osteopontin.  相似文献   

10.
The cell-free biosynthesis of the bone protein osteonectin was studied using mRNA from fetal porcine calvariae. Total RNA was extracted from the calvariae with guanidinium thiocyanate and was partially purified by precipitation with acid/ethanol. Translations were performed using the reticulocyte lysate system and were optimized with respect to mRNA concentration and K+ (70 mM) and Mg2+ (0.6 mM) concentration. Cell-free synthesized osteonectin, radiolabeled with [35S]methionine, was specifically immunoprecipitated with rabbit antiserum to porcine osteonectin and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. When analyzed under reduced conditions, the translated protein migrated with an Mr 45,000 compared to an Mr 39,000 for cell-synthesized osteonectin. When translated in the presence of microsomal membranes, the immunoprecipitated osteonectin co-migrated with the cell-synthesized osteonectin, indicating that a signal sequence of about 45-50 amino acids (Mr 6,000) had been removed. Under nonreduced conditions the pre-osteonectin co-migrated with osteonectin (Mr 39,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that a highly folded structure is retained by disulfide bridges under denaturing conditions. The relationship between the immunoprecipitated pre-osteonectin from the cell-free translations and both the cell-synthesized and tissue-extracted osteonectin was confirmed by one-dimensional peptide mapping of Staphylococcus aureus V-8 protease digestions. The results indicate that porcine osteonectin is synthesized on polysomes in a pre-osteonectin form which is translocated vectorially into microsomal vesicles and cotranslationally processed by the removal of a signal peptide.  相似文献   

11.
骨唾液酸蛋白(BSP)的结构与功能   总被引:2,自引:0,他引:2  
骨唾液酸蛋白 (Bonesialoprotein ,简称BSP)是细胞外基质中的一种糖蛋白 ,主要分布在矿化组织中 ,参与骨代谢 ,但近年研究发现BSP在癌细胞的骨转移中发挥作用并对血管生成有促进作用。本文对BSP的结构与功能及研究状况作一介绍。  相似文献   

12.
A glycoprotein antigen was purified from human brain by immunoaffinity chromatography using the 44D10-monoclonal IgG, and its chemical nature was investigated. The yield of antigen was estimated at 91% and a 4340-fold purification was obtained relative to the white-matter homogenate. The antigen preparation from brain was further purified by preparative SDS/polyacrylamide-gel electrophoresis (PAGE) to obtain a glycoprotein with an Mr of 80,000 consisting of a single polypeptide. Amino acid analyses revealed a composition which was high in acidic and neutral amino acids, and low in basic residues. The presence of both glucosamine and galactosamine suggested that the glycoprotein contained both N- and O-linked glycans. Neutral sugar analyses showed that fucose, galactose and mannose were present. An assay for sialic acid determined that there were approximately 20 mol of sialic acid per mol of glycoprotein. Chemical cleavage of oligosaccharides by trifluoromethanesulphonic acid followed by SDS/PAGE showed that carbohydrate accounted for 25,000 of the 80,000-Mr glycoprotein.  相似文献   

13.
Identification of a bone sialoprotein receptor in osteosarcoma cells   总被引:12,自引:0,他引:12  
Bone sialoprotein (BSP) is an extracellular matrix glycoprotein associated with the mineral bone matrix. The amino acid sequence of BSP contains an Arg-Gly-Asp (RGD) sequence which confers to the protein cell binding properties (Oldberg, A., Franzén, A., and Heineg?rd, D. (1988) J. Biol. Chem. 263, 19430-19432). When BSP was used as an affinity matrix to isolate a cell surface receptor from rat osteosarcoma cells, a protein composed of polypeptides similar in size to those of a previously characterized vitronectin receptor was obtained. This putative BSP receptor, like the vitronectin receptor, bound also to an affinity matrix made of an RGD-containing heptapeptide. Moreover, similar patterns of inhibition of cell attachment to BSP and vitronectin was obtained with variant RGD-containing peptides, with BSP and with vitronectin. Finally, an anti-vitronectin receptor antiserum immunoprecipitated a receptor identical in size to the receptor bound to a BSP affinity matrix. These results show that BSP is recognized by an RGD-directed receptor and that both vitronectin and BSP can bind to this receptor.  相似文献   

14.
Bone matrix and tendon are compared in terms of their carbohydrate and non-collagenous protein composition. The collagen content of both tissues was similar (90-91%), but bone matrix had at least three times as much sialic acid (0.28%) as tendon (0.08%). Smaller differences were found in the analysis of hexoses and hexosamines. After digestion with bacterial collagenase, about 9% of the total protein from both tissues was non-diffusible on dialysis, and this contained only 0.15% (bone) and 0.7% (tendon) of the original hydroxyproline; recovery of sialic acid was 86-87%. The collagenase-resistant soluble material amounted to about 9% (bone matrix) and 5% (tendon); the insoluble residues were 1 and 4% respectively. There were clear differences in the carbohydrate contents of the digests, but the amino acid compositions were similar. When the soluble digests were chromatographed on DEAE-cellulose, the elution profiles indicated the presence in each tissue of a variety of glycoproteins and a proteoglycan fraction, and showed clearly that an acidic glycoprotein corresponding to bone sialoprotein was not present in tendon.  相似文献   

15.
Human bone sialoprotein (BSP) comprises 15% of the total noncollagenous proteins in bone and is thought to be involved in bone mineralization and remodeling. Recent data suggest a role for BSP in breast cancer and the development of bone metastases. We have produced full-length recombinant BSP in a human cell line and purified the protein from human bone retaining the native structure with proper folding and post-translational modifications. Mass spectrometry of bone-derived BSP revealed an average mass of 49 kDa and for recombinant BSP 57 kDa. The post-translational modifications contribute 30-40%. Carbohydrate analysis revealed 10 different complex-type N-glycans on both proteins and eight different O-glycans on recombinant BSP, four of those were found on bone-derived BSP. We could identify eight threonines modified by O-glycans, leaving the C terminus of the protein free of glycans. The recombinant protein showed similar secondary structures as bone-derived BSP. BSP was visualized in electron microscopy as a globule linked to a thread-like structure. The affinity for hydroxyapatite was higher for bone-derived BSP than for recombinant BSP. Cell adhesion assays showed that the binding of BSP to cells can be reversibly diminished by denaturation.  相似文献   

16.
Tamm-Horsfall glycoprotein preparations were obtained from calf urine by 1.0 M NaCl precipitation followed by 4 M urea/Sepharose 4B chromatography. By using 0.1% sodium dodecyl sulfate polyacrylamide gel electrophoresis a molecular weight of 86 500 +/- 4500 (n = 12) was calculated for the glycoprotein. Amino acid and carbohydrate analyses were performed, the carbohydrate composition being (in residues per 100 amino acid residues in the glycoprotein): fucose, 0.90; galactose, 4.82; mannose, 4.63;N-acetylglucosamine, 7.36; N-acetylgalactosamine, 1.38; sialic acid, 2.93. Under conditions of mild acid hydrolysis (0.05 M H2SO4, 80 degrees C, 1 h) the calf Tamm-Horsfall glycoprotein preparations were degraded partially into two lower molecular weight fragments (approximate Mr 66 000 and 51 000), as shown by polyacrylamide gel electrophoresis, both fragments being periodic acid-Schiff reagent positive.  相似文献   

17.
To further define the structure of the pancreatic cholecystokinin (CCK) receptor and the topographical distance relationships between its subunits, we developed a series of monofunctional photoaffinity probes in which a fixed receptor-binding domain was separated from a photolabile nitrophenylacetamido group by defined lengths of a flexible spacer. The well-characterized CCK receptor radioligand 125I-D-Tyr-Gly-[(Nle28,31)CCK-26-33] provided the receptor-binding component of the probes, while the polymer poly(ethylene glycol) (2, 4, 7, and 10 monomer units long) was used as the spacer. The patterns of affinity labeling of rat pancreatic plasma membranes were examined as a function of spacer length. This ranged from 7.3 to 16.2 A, as calculated by root-mean-square end-to-end distances and validated experimentally by time-resolved fluorescence resonance energy transfer measurements. All probes in the series specifically labeled the Mr = 85,000-95,000 glycoprotein with Mr = 42,000 core, which has been proposed to contain the hormone recognition site. In addition, when the spacer length reached 16.2 A, membrane proteins of Mr = 80,000 and Mr = 40,000 were specifically labeled. The product of endo-beta-N-acetylglucosaminidase F digestion of the Mr = 80,000 protein was Mr = 65,000, similar to a protein previously identified in affinity labeling experiments using a CCK-33-based probe. These observations are consistent with the Mr = 85,000-95,000 pancreatic protein representing the hormone-binding subunit of the CCK receptor, while proteins of Mr = 80,000 and Mr = 40,000 may represent noncovalently associated subunits sited within 16.2 A of the binding domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two different sialoproteins were isolated from the mineralized matrix of bovine bone by using extraction with guanidinium chloride first without and then with EDTA. The sialoproteins were purified by chromatography on DEAE-cellulose eluted with a sodium acetate gradient in 7 M-urea, pH 6. Two sialoproteins (I and II) were then separated by chromatography on DEAE-cellulose eluted with a sodium chloride gradient in 7 M-urea, pH 4. The ratio between recovered sialoprotein I and II was 1:5. The chemical analysis of the two sialoproteins showed that they differed. Both, however, had very high contents of aspartic acid/asparagine and glutamic acid/glutamine though they differed markedly in contents of leucine and glycine. Both sialoproteins contained phosphate, sialoprotein I more than sialoprotein II. Content of sialic acid was substantially higher in the more prominent sialoprotein II (13.4% of dry weight) than in sialoprotein I (4.8% of dry weight). The peptide patterns produced by trypsin digests of [125I]iodinated sialoproteins I and II showed both structural similarities and structural differences. Sialoprotein II, being the major component, was characterized further. Its molecular mass was 57300 Da determined by sedimentation-equilibrium centrifugation in 6 M-guanidinium chloride, and its sedimentation coefficient (S0(20),w) was 2.53 S. Upon rotary shadowing, sialoprotein II appeared as an extended rod, having a core with an average length of 40 nm. Two types of oligosaccharides, N-glycosidically and O-glycosidically linked to the core protein, were isolated from sialoprotein II. Contents of mannose and sialic acid in the O-linked oligosaccharide were surprisingly high. Antibodies against sialoprotein II were raised in rabbits and an enzyme-linked immunosorbent assay was developed. Antigenicity of sialoprotein II was not affected by reduction and alkylation, was only partially lost upon trypsin digestion and was completely lost upon fragmentation of the core protein by alkaline-borohydride treatment, indicating that all antigenic sites were located in the protein portion. Sialoprotein I expectedly showed only partial immunological cross-reactivity with sialoprotein II. The quantity of sialoprotein II in bone extracts was found to be about 1.5 mg/g wet wt. of bone, but the protein was not detected in extracts of a number of other bovine tissues i.e. aorta, cartilage, dentine, kidney, liver, muscle, sclera, skin and tendon.  相似文献   

19.
20.
Characterization of the cell surface heterodimer VLA-4 and related peptides   总被引:53,自引:0,他引:53  
A monoclonal antibody (B-5G10) was produced which specifically recognizes the Mr 150,000/130,000 VLA-4 complex on the surface of human cells. Cross-linking studies indicated that the Mr 150,000 alpha 4 subunit of VLA-4 is in noncovalent 1:1 association with the Mr 130,000 VLA beta subunit. In the absence of cross-linking, the VLA-4 alpha 4 beta subunit complex was easily dissociated, especially in Nonidet P-40 detergent, or at elevated pH (above 8.0). Studies of dissociated subunits showed that B-5G10 recognizes an epitope on the Mr 150,000 alpha 4 subunit of VLA-4, whereas the beta subunit is immunologically identical to the Mr 130,000 beta subunit common to all VLA heterodimers. VLA-4 is widely distributed on hematopoietic cells, including thymocytes, peripheral blood lymphocytes, monocytes, activated T cells, T and B lymphoblastoid cell lines, and myeloid cell lines. However, VLA-4 is only weakly expressed on most adherent cell lines tested. Immunoprecipitates of VLA-4 often contain additional proteins of Mr 80,000 and Mr 70,000. These are probably derived from the Mr 150,000 alpha 4 subunit because: 1) they are both recognized by anti-alpha 4 sera, but not anti-beta sera; 2) the sum of their sizes is equal to the size of alpha 4; 3) they are selectively coexpressed with alpha 4 and not other VLA alpha subunits; 4) the Mr 80,000 protein has an identical NH2-terminal sequence to alpha 4; 5) like alpha 4, the Mr 70,000 and 80,000 peptides can variably associate with the VLA beta subunit; and 6) trypsin appears to cleave the Mr 150,000 alpha 4 subunit into products of Mr 70,000 and 80,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号